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Preface

I have written this unofficial solution guide to serve as a companion to the book
Number Theory, Second Edition, by Underwood Dudley. This manual is in-
tended as an aid for students who are studying number theory using Dudley’s
text. I strongly encourage students using this guide to first attempt each prob-
lem for themselves. If no progress is made after struggling with the problem
for a time, or if the student does find a solution and wants to check their work,
then this guide may be helpful.

In writing these solutions, I have avoided using any techniques or results
before the point at which they are introduced in the text. My solutions should
therefore be accessible to students who have read the text up to the appropriate
chapter.

This solution manual is lengthy and contains solutions to many problems, so
errors are inevitable. If you find an error or have a suggestion, please feel free
to email me at gkikola@gmail.com. I appreciate any corrections or feedback.

Please know that this guide is currently unfinished. I am slowly working
on adding the remaining chapters, but this will be done at my own pace. If
you would like to find a solution to a problem that I have not included, try
typing the problem into a web search engine such as Google; it is quite likely
that someone somewhere has already solved the problem and published it on
the Internet.

This guide is licensed under the Creative Commons Attribution-ShareAlike
4.0 International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/

I am grateful to Underwood Dudley for authoring such a lovely and concise
reference. I also give my thanks to those readers who have taken the time to
inform me of errors in my solutions.

Greg Kikola
www.gregkikola.com

gkikola@gmail.com
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Chapter 1

Integers

1.1 Exercises

1.1.1 Exercise 1

Which integers divide zero?

Solution. Every integer divides 0. For, if k is any integer, then 0k = 0 so that
k | 0.

1.1.2 Exercise 2

Show that if a | b and b | c then, a | c.

Proof. Let a | b and b | c. Then there are integers m and n such that am = b
and bn = c. But then a(mn) = (am)n = bn = c. Since mn is an integer, we
have a | c.

1.1.3 Exercise 3

Prove that if d | a then d | ca for any integer c.

Proof. Again, by definition we can find an integer n such that dn = a. But then
cdn = ca. Since cn is an integer, it follows that d | ca.

1.1.4 Exercise 4

What are (4, 14), (5, 15), and (6, 16)?

Solution. By inspection, (4, 14) = 2, (5, 15) = 5, and (6, 16) = 2.

1.1.5 Exercise 5

What is (n, 1), where n is any positive integer? What is (n, 0)?

Solution. We have (n, 1) = 1 since there is no integer greater than 1 which
divides 1. We also have (n, 0) = n since no integer larger than n can divide n,
and n certainly divides itself and 0.
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1.1.6 Exercise 6

If d is a positive integer, what is (d, nd)?

Solution. (d, nd) = d since d is a common divisor (d | nd by Lemma 2) and
there can be no greater divisor of d.

1.1.7 Exercise 7

What are q and r if a = 75 and b = 24? If a = 75 and b = 25?

Solution. We have

75 = 3(24) + 3 and 75 = 3(25) + 0.

So q = 3 and r = 3 in the first case, and q = 3 and r = 0 in the second.

1.1.8 Exercise 8

Verify that Lemma 3 is true when a = 16, b = 6, and q = 2.

Solution. Since 16 = 6 · 2 + 4, we have r = 4. And since (16, 6) = 2 = (6, 4), the
lemma is true for this case.

1.1.9 Exercise 9

Calculate (343, 280) and (578, 442).

Solution. Following the Euclidean Algorithm, we have

343 = 280 · 1 + 63

280 = 63 · 4 + 28

63 = 28 · 2 + 7

28 = 7 · 4.

Therefore (343, 280) = 7.
For the second pair,

578 = 442 · 1 + 136

442 = 136 · 3 + 34

136 = 34 · 4,

so (578, 442) = 34.

1.2 Problems

1.2.1 Problem 1

Calculate (314, 159) and (4144, 7696).
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Solution. For the first pair, we have

314 = 159 · 1 + 155

159 = 155 · 1 + 4

155 = 4 · 38 + 3

4 = 3 · 1 + 1

3 = 1 · 3,

so (314, 159) = 1 and the two numbers are relatively prime.
For the second pair, we have

4144 = 7696 · 0 + 4144

7696 = 4144 · 1 + 3552

4144 = 3552 · 1 + 592

3552 = 592 · 6,

so (4144, 7696) = 592.

1.2.2 Problem 2

Calculate (3141, 1592) and (10001, 100083).

Solution. The procedure is the same as before, so we omit the details. We have
(3141, 1592) = 1 and (10001, 100083) = 73.

1.2.3 Problem 3

Find x and y such that 314x+ 159y = 1.

Solution. We applied the Euclidean algorithm to 314 and 159 in the first prob-
lem. Working through those equations in reverse order, we find

1 = 4− 3 = 4− (155− 4 · 38)

= −1 · 155 + 39 · 4 = −1 · 155 + 39(159− 155)

= −40 · 155 + 39 · 159 = −40(314− 159) + 39 · 159

= −40 · 314 + 79 · 159.

So x = −40 and y = 79 is one solution.

1.2.4 Problem 4

Find x and y such that 4144x+ 7696y = 592.

Solution. We proceed as in the previous problem.

592 = 4144− 3552 = 4144− (7696− 4144)

= 2 · 4144− 7696,

so x = 2 and y = −1 is one possibility.
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1.2.5 Problem 5

If N = abc+ 1, prove that (N, a) = (N, b) = (N, c) = 1.

Proof. Let d = (N, a). Since 1 = N − abc, it follows that d | 1, and therefore
d = 1. Using the same reasoning for b and c, we see that (N, a) = (N, b) =
(N, c) = 1.

1.2.6 Problem 6

Find two different solutions of 299x+ 247y = 13.

Solution. The Euclidean Algorithm produces

299 = 247 · 1 + 52

247 = 52 · 4 + 39

52 = 39 · 1 + 13

39 = 13 · 3.

Now, working backwards using substitution gives

13 = 52− 39 = 52− (247− 4 · 52)

= 5 · 52− 247 = 5(299− 247)− 247

= 5 · 299− 6 · 247.

This gives one solution.
Since 299 = 23 · 13 and 247 = 19 · 13, subtracting 19 from x and adding 23

to y will keep the equation balanced. The reason this works is because

299(x− 19) + 247(y + 23) = 299x+ 247y − 19 · 299 + 23 · 247

= 299x+ 247y − 19 · 23 · 13 + 23 · 19 · 13

= 299x+ 247y = 13.

Therefore a second solution is given by x = −14 and y = 17.
Note that we can continue this indefinitely (in both directions) to find in-

finitely many solutions. For example, x = −33 and y = 40 is a third solu-
tion.

1.2.7 Problem 7

Prove that if a | b and b | a, then a = b or a = −b.

Proof. There are integers x and y such that ax = b and by = a. Substituting
ax for b in the second equation gives axy = a or xy = 1. But the only integers
having a multiplicative inverse are 1 and −1. So either x = y = 1 in which case
a = b, or else x = y = −1 in which case a = −b.

1.2.8 Problem 8

Prove that if a | b and a > 0, then (a, b) = a.

Proof. Since a divides itself and b, we must have a | (a, b) by Corollary 2. But
we also know that (a, b) | a by definition. By the previous problem, it follows
that either (a, b) = a or (a, b) = −a. But a > 0, so we must have (a, b) = a.
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1.2.9 Problem 9

Prove that ((a, b), b) = (a, b).

Proof. Let d = (a, b). Then d | b by definition, and d > 0. So we may apply the
previous problem to establish that (d, b) = d.

1.2.10 Problem 10

(a) Prove that (n, n+ 1) = 1 for all n > 0.

Proof. Fix an n > 0 and put d = (n, n + 1). Then d divides both n + 1
and n, so by Lemma 2, d also divides their difference (n + 1) − n = 1.
Since d | 1 and d > 0, we must have d = 1.

(b) If n > 0, what can (n, n+ 2) be?

Solution. Again, if d = (n, n + 2), then d must divide (n + 2) − n = 2.
Thus d must be either 1 or 2. For example, (3, 5) = 1 and (4, 6) = 2.

1.2.11 Problem 11

(a) Prove that (k, n+ k) = 1 if and only if (k, n) = 1.

Proof. Suppose (k, n + k) = 1 and set d = (k, n). Since d divides k and
n, d also divides their sum n + k. Hence d is a common divisor of k and
n+ k, so d = 1.

Conversely, suppose (k, n) = 1 and put d = (k, n + k). Again, d | k and
d | n+ k, so d divides their difference n. Therefore d is a common divisor
of k and n, so d = 1.

(b) Is it true that (k, n+ k) = d if and only if (k, n) = d?

Solution. Yes. Using the same reasoning as above, we can see that c is a
common divisor of k and n + k if and only if it is a common divisor of k
and n. It follows that (k, n+ k) = (k, n).

1.2.12 Problem 12

Prove: If a | b and c | d, then ac | bd.

Proof. There are integers m and n such that am = b and cn = d. Therefore
bd = (am)(cn) = mn(ac), so ac | bd.

1.2.13 Problem 13

Prove: If d | a and d | b, then d2 | ab.

Proof. This is a special case of the previous problem.
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1.2.14 Problem 14

Prove: If c | ab and (c, a) = d, then c | db.

Proof. Find integers x and y with cx+ ay = d. Multiplying by b then gives

cxb+ ayb = db.

Since c divides the left-hand side, it must divide the right-hand side. Therefore
c | db.

1.2.15 Problem 15

(a) If x2 + ax+ b = 0 has an integer root, show that it divides b.

Proof. We are assuming that a and b are integers. Let the polynomial
have the integer root c. Then

b = −c2 − ac = c(−c− a),

and we see that c | b since −c− a is an integer.

(b) If x2 + ax+ b = 0 has a rational root, show that it is in fact an integer.

Proof. Let the root be c/d where c and d are relatively prime integers with
d nonzero. Then

c2

d2
+
ac

d
+ b = 0.

Multiplying through by d2 then gives

c2 + acd+ bd2 = 0

or c2 = −d(ac + bd). We see that d | c2. Since (c, d) = 1, we have by
Corollary 1 that d | c as well. But then (c, d) = d, so we must have d = 1.
Therefore the rational number c/d is actually just the integer c.



Chapter 2

Unique Factorization

2.1 Exercises

2.1.1 Exercise 1

How many even primes are there? How many whose last digit is 5?

Solution. If a prime p is even then by definition 2 | p. Therefore the only prime
that is even is 2 itself. Similarly, any positive integer that ends in a 5 (written
in base 10) must be divisible by 5 (this is due to the fact that our base, 10, is
itself divisible by 5). And the only prime divisible by 5 is 5 itself.

2.1.2 Exercise 2

Construct a proof of Lemma 2 using induction.

Solution. Lemma 2 says that every positive integer greater than 1 can be written
as a product of primes. 2 is a prime and is a product of itself, so the base case is
satisfied. Now suppose there is an integer n > 1 such that every integer k with
1 < k ≤ n can be written as a product of primes. We must show that n+ 1 can
be written as such a product.

If n+ 1 is prime, then we are done, it is already a product of primes. If not,
then n + 1 is composite, and we may write n + 1 = st where s and t are each
integers with 1 < s, t < n+ 1. By the inductive hypothesis, s and t can each be
written as a product of primes,

s = p1p2 · · · pi, and t = q1q2 · · · qj ,

where each pk and qk are prime (not necessarily distinct). Then

n+ 1 = st = p1p2 · · · piq1q2 · · · qj ,

and we have written n+1 as a product of primes, completing the inductive step.
It follows by induction that all integers n > 1 can be written as a product of
primes.

7
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2.1.3 Exercise 3

Write prime decompositions for 72 and 480.

Solution. 72 = 8 · 9 = 23 · 32 and 480 = 48 · 10 = 16 · 3 · 10 = 25 · 3 · 5.

2.1.4 Exercise 4

Which members of the set less than 100 are not prome?

Solution. The set being referenced in the question is the set

A = {4n+ 1 | n = 0, 1, 2, . . . },

where k ∈ A is considered “prome” if it has no divisors in A other than 1 and
itself.

Since 1001/2 = 10, we only need to look for divisors less than or equal to 10.
The only such members of A are 1, 5, and 9. So any nonprome member of A
less than 100 must be a multiple of 5 or 9. These numbers are

25, 45, 65, 81, 85.

2.1.5 Exercise 5

What is the prime-power decomposition of 7950?

Solution. 7950 is divisible by 50 = 2 · 52, so dividing by 50 gives 159. 159 is
divisible by 3, so divide by 3 to get 53. Since 53 is prime we are done. Therefore

7950 = 2 · 3 · 52 · 53.

2.2 Problems

2.2.1 Problem 1

Find the prime-power decompositions of 1234, 34560, and 111111.

Solution. First, 1234 is divisible by 2, so we write 1234 = 2 · 617. Now 617 is
not divisible by 2 or 5. Using the table in Appendix C, we see that 617 is prime.
Therefore 1234 = 2 · 617 is the prime factorization.

For 34560, first we divide by all factors of 2 and 5 to get 34560 = 28 · 5 · 27.
Now 27 factors as 33 so this gives

34560 = 28 · 33 · 5.

Finally, 111111 is too big for the table, but by trying small possible divisors
we can see that it is divisible by 3, with 111111 = 3·37037. And 37037 is divisible
by 7: 37037 = 7 · 5291. Now we may make use of the table to determine that
5291 is divisible by 11. 5291/11 = 481, which is divisible by 13. 481/13 = 37,
and 37 is prime. So

111111 = 3 · 7 · 11 · 13 · 37.
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2.2.2 Problem 2

Find the prime-power decompositions of 2345, 45670, and 999999999999.

Solution. Proceeding in the same manner as in the previous problem, we find

2345 = 5 · 7 · 67,

45670 = 2 · 5 · 4567,

and

999999999999 = 33 · 7 · 11 · 13 · 37 · 101 · 9901.

2.2.3 Problem 3

Tartaglia (1556) claimed that the sums

1 + 2 + 4, 1 + 2 + 4 + 8, 1 + 2 + 4 + 8 + 16, · · ·

are alternately prime and composite. Show that he was wrong.

Proof. Looking at the partial sums having an odd number of terms, we find

1 + 2 + 4 = 7

1 + 2 + 4 + 8 + 16 = 31

1 + 2 + 4 + 8 + 16 + 32 + 64 = 127

1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 = 511 = 7 · 73.

Since 511 is not prime, we see that Tartaglia’s conjecture was not correct.

2.2.4 Problem 4

(a) DeBouvelles (1509) claimed that one or both of 6n + 1 and 6n − 1 are
primes for all n ≥ 1. Show that he was wrong.

Proof. For n = 20, we have 6n+ 1 = 121 = 112 and 6n− 1 = 119 = 7 · 17.
Therefore DeBouvelles’s claim is not correct.

(b) Show that there are infinitely many n such that both 6n − 1 and 6n + 1
are composite.

Proof. Suppose there are finitely many n with both 6n − 1 and 6n + 1
composite. Let them be n1, n2, . . . , nk.

Now let n = (6nk + 9)!, where ! denotes the factorial function (i.e., n! =
1 · 2 · 3 · · · (n − 1) · n). Now the integers n + 2, n + 3, . . . , n + 9 are all
composite, since for any m with 2 ≤ m ≤ 9, we clearly have m | n + m.
So we have found a sequence of 8 consecutive composite numbers. Now
these numbers must include a pair of the form 6t−1 and 6t+ 1. But both
of these are composite, and t > nk. This is a contradiction, since nk was
supposed to be the largest such value. Therefore there are infinitely many
n with both 6n− 1 and 6n+ 1 composite.
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2.2.5 Problem 5

Prove that if n is a square, then each exponent in its prime-power decomposition
is even.

Proof. Let n > 1 be a square and write n = k2 for some integer k > 1. Let the
prime-power decomposition of k be

k = pe11 p
e2
2 · · · perr .

Then

n = (pe11 p
e2
2 · · · perr )2

= (pe11 )2(pe22 )2 · · · (perr )2

= p2e11 p2e22 · · · p2err .

Since this prime-power decomposition must be unique (up to reordering), we
see that every exponent in the prime-power decomposition of n is even.

2.2.6 Problem 6

Prove that if each exponent in the prime-power decomposition of n is even, then
n is a square.

Proof. Suppose every exponent in the prime-power decomposition of n is even.
Then each exponent ei in the decomposition has the form ei = 2fi for some
integer fi. Then n can be written

n = p2f11 p2f22 · · · p2frr

= (pf11 )2(pf22 )2 · · · (pfrr )2

= (pf11 p
f2
2 · · · pfrr )2

= k2,

where k = pf11 · · · pfrr , and we see that n is a square.

2.2.7 Problem 7

Find the smallest integer divisible by 2 and 3 which is simultaneously a square
and a fifth power.

Solution. Let the smallest such number be n. The least common multiple of 2
and 3 is 6, so 6 | n. n is a square and a fifth power, so n must actually be a
tenth power, since 10 is the least common multiple of 2 and 5. The smallest
tenth power divisible by 6 is 610, so we have

n = 610 = 60466176.

2.2.8 Problem 8

If d | ab, does it follow that d | a or d | b?

Solution. No. For example, 6 | 4 · 9 but 6 - 4 and 6 - 9. If, however, we know
that d is prime, then the conclusion does hold, as proved in Lemma 5.
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2.2.9 Problem 9

Is it possible for a prime p to divide both n and n+ 1 (n ≥ 1)?

Solution. No. For, if it is possible, suppose the prime p divides both n and
n+ 1. Then p also divides their difference, (n+ 1)− n = 1. So we would have
p | 1, which is clearly absurd.

2.2.10 Problem 10

Prove that n(n+ 1) is never a square for n > 0.

Proof. Suppose n(n+ 1) = k2 for some integer k > 0. Then n2 + n = k2 which
gives k2 − n2 = n. Factoring the left-hand side then gives

(k + n)(k − n) = n.

So in particular, k + n | n. But this is impossible, since k + n > n > 0. This
contradiction shows that n(n+ 1) is not a square.

2.2.11 Problem 11

(a) Verify that 25 · 92 = 2592.

Solution. Direct computation gives 25 · 92 = 32 · 81 = 2592.

(b) Is 25 · ab = 25ab possible for other a, b? (Here 25ab denotes the digits of
25 · ab and not a product.)

Solution. Suppose it is possible, and let a and b be single-digit integers,
0 ≤ a, b ≤ 9, so that

25 · ab = 2500 + 10a+ b.

Note that

78 < ab =
2500 + 10a+ b

32
< 82.

So the only possibilities for ab are 79, 80, and 81. But 79 is prime, and
80 = 24 · 5, so neither of these are perfect powers. Therefore ab = 81 and
we see that either a = 3, b = 4 or a = 9, b = 2. Since 32 · 81 = 2592, only
the second combination works.

2.2.12 Problem 12

Let p be the least prime factor of n, where n is composite. Prove that if p > n1/3,
then n/p is prime.

Proof. Let p and n be as stated, and suppose n/p is composite, so that n/p = ab,
where a, b > 1. Then n = abp. And since p > n1/3, we have

n = abp < p3, which implies ab < p2.

It follows that one of a, b must be less than p. Since a, b > 1 we see that
one of a or b must contain a prime factor q smaller than p. But then q | n,
which contradicts the fact that p is the smallest prime divisor. Therefore n/p
is prime.
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2.2.13 Problem 13

True or false? If p and q divide n, and each is greater than n1/4, then n/pq is
prime.

Solution. False. As a counterexample, take n = 60 = 22 · 3 · 5. Now, we have
601/4 < 811/4 = 3. So p = 3 and q = 5 are both greater than n1/4, each divide
n, but n/pq = 4 is not prime.

2.2.14 Problem 14

Prove that if n is composite, then 2n−1 is composite.

Proof. Let n be composite. 2n−1 is composite as long as n > 2. But the smallest
composite number is 4, so we certainly have n > 2. Therefore 2n−1 is composite
for any composite number n.

2.2.15 Problem 15

Is it true that if 2n − 1 is composite, then n is composite?

Solution. No. For example, 2047 = 211 − 1 is composite since 2047 = 23 · 89,
but 11 is not composite.



Chapter 3

Linear Diophantine
Equations

3.1 Exercises

3.1.1 Exercise 1

The equation 2x+ 4y = 5 has no solutions in integers. Why not?

Solution. If x and y are integers such that 2x+ 4y = 5, then 2(x+ 2y) = 5 and
we see that 2 | 5, which is clearly absurd.

3.1.2 Exercise 2

Find by inspection a solution of x + 5y = 10 and use it to write five other
solutions.

Solution. Certainly x = 0 and y = 2 works, so by Lemma 1 we also have the
solutions

x = 5t and y = 2− t

for any integer t. Five such solutions, written as ordered pairs, are (−10, 4),
(−5, 3), (5, 1), (10, 0), and (15,−1).

3.1.3 Exercise 3

Which of the following linear diophantine equations is impossible? (We will say
that a diophantine equation is impossible if it has no solutions).

(a) 14x+ 34y = 90.

Solution. Since (14, 34) = 2 and 2 | 90, it follows by Lemma 2 that this
equation has at least one solution.

(b) 14x+ 35y = 91.

Solution. (14, 35) = 7 and 7 | 91, so this equation has a solution.

13
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(c) 14x+ 36y = 93.

Solution. This time, (14, 36) = 2 but 2 - 93, so this equation is impossible.

3.1.4 Exercise 4

Find all solutions of 2x+ 6y = 20.

Solution. Dividing by 2 gives x + 3y = 10. A particular solution is given by
(x0, y0) = (10, 0), so by Lemma 3 all solutions have the form

x = 10 + 3t and y = −t

where t is an integer.

3.1.5 Exercise 5

Find all the solutions of 2x+ 6y = 18 in positive integers.

Solution. In the text, the general solution was found to be

x = 9 + 3t and y = −t,

for t an integer. If x is to be positive, then 9 + 3t > 0 and, solving for t, we get
t > −3. On the other hand, if y > 0 then t < 0. So we have −3 < t < 0 and
we see that the only solutions are given by t = −2 and t = −1. These solutions
are, respectively, (3, 2) and (6, 1).

3.2 Problems

3.2.1 Problem 1

Find all the integer solutions of x+ y = 2, 3x− 4y = 5, and 15x+ 16y = 17.

Solution. For x+ y = 2, a particular solution is (1, 1), so the general solution is

x = 1 + t and y = 1− t,

where t is an integer.

For 3x − 4y = 5 we find by inspection the particular solution (3, 1) which
gives the general solution of

x = 3− 4t and y = 1− 3t.

Lastly, for 15x+16y = 17, one solution is (−1, 2). Then the general solution
is

x = −1 + 16t and y = 2− 15t.
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3.2.2 Problem 2

Find all the integer solutions of 2x+ y = 2, 3x− 4y = 0, and 15x+ 18y = 17.

Solution. For 2x+ y = 2, one solution is (1, 0), so the general solution is

x = 1 + t and y = −2t

for an integer t.
For 3x−4y = 0, a particular solution is (4, 3), producing the general solution

x = 4− 4t and y = 3− 3t.

Lastly, the equation 15x + 18y = 17 has no solutions since (15, 18) = 3 but
3 does not divide 17.

3.2.3 Problem 3

Find the solutions in positive integers of x+y = 2, 3x−4y = 5, and 6x+15y = 51.

Solution. In Problem 3.2.1 we found the general solution of x + y = 2 to be
(1 + t, 1− t). If x > 0 then t > −1 and if y > 0 then t < 1. So the only solution
in positive integers is given by t = 0, which corresponds to the solution (1, 1).

For 3x− 4y = 5 we found the general solution to be (3− 4t, 1− 3t). Setting
y > 0 gives

t <
1

3
,

and we see that x and y are positive integers if and only if t is an integer with
t ≤ 0. So the solutions are (3, 1), (7, 4), (11, 7), . . . .

To solve 6x + 15y = 51, we divide by 3 to get 2x + 5y = 17. A particular
solution is (1, 3), leading to the general solution of (1 + 5t, 3− 2t). By setting x
and y greater than 0, we determine that

−1

5
< t <

3

2
.

So t = 0 or 1, making the only positive solutions (1, 3) and (6, 1).

3.2.4 Problem 4

Find all the solutions in positive integers of 2x + y = 2, 3x − 4y = 0, and
7x+ 15y = 51.

Solution. Using the results from Problem 3.2.2, the general solution for 2x+y =
2 was (1 + t,−2t). Both variables are positive when −1 < t < 0, but there are
no integers strictly between −1 and 0, so there are no positive solutions.

For 3x − 4y = 0 we found the general solution (4 − 4t, 3 − 3t). All of these
solutions are positive integers so long as t ≤ 0. Particular solutions are (4, 3),
(8, 6), (12, 9), and so on.

For 7x + 15y = 51, we find the particular solution (3, 2) which leads to the
general solution (3 + 15t, 2− 7t). However, t = 0 is the only value which makes
both x and y positive, so (3, 2) is the only valid solution.
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3.2.5 Problem 5

Find all the positive solutions in integers of

x+ y + z = 31,

x+ 2y + 3z = 41.

Solution. Subtracting the first equation from the second gives

y + 2z = 10.

This equation has the particular solution (y, z) = (0, 5) which leads to the
general solution (2t, 5 − t). Taking y, z > 0 we find that the only relevant
solutions are (2, 4), (4, 3), (6, 2), and (8, 1). Substituting these into either of the
original equations allows us to find the corresponding values for x. The four
solutions are

x = 25, y = 2, and z = 4;

x = 24, y = 4, and z = 3;

x = 23, y = 6, and z = 2;

x = 22, y = 8, and z = 1.

3.2.6 Problem 6

Find the five different ways a collection of 100 coins—pennies, dimes, and
quarters—can be worth exactly $4.99.

Solution. Let x be the number of pennies, y the number of dimes, and z the
number of quarters. Since there are 100 coins, whose total value is $4.99, we
have the two equations

x+ y + z = 100

x+ 10y + 25z = 499.

Subtracting the first equation from the second gives 9y+24z = 399. Dividing
this equation by 3 then gives 3y+8z = 133. By inspection, a particular solution
is y = 7 and z = 14. This gives the general solution y = 7 + 8t and z = 14− 3t.
We find the positive solutions to be

t = 0: x = 79, y = 7, and z = 14;

t = 1: x = 74, y = 15, and z = 11;

t = 2: x = 69, y = 23, and z = 8;

t = 3: x = 64, y = 31, and z = 5;

t = 4: x = 59, y = 39, and z = 2.

These are the only five solutions in the positive integers.
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3.2.7 Problem 7

A man bought a dozen pieces of fruit—apples and oranges—for 99 cents. If
an apple costs 3 cents more than an orange, and he bought more apples than
oranges, how many of each did he buy?

Solution. Let x be the number of apples that the man bought, and let y be
the number of oranges. The equation x + y = 12 has only five solutions in the
positive integers with x > y, namely (7, 5), (8, 4), (9, 3), (10, 2), and (11, 1).

Now, if a is the price of an apple, then the solution for x and y must also
satisfy the equation ax + (a − 3)y = 99. If we substitute the solution (7, 5)
into this equation and simplify, we get 12a − 15 = 99 or a = 19/2, which is
not an integer. Similarly, the solutions (8, 4), (10, 2), and (11, 1) also lead to
non-integer values of a. The only solution that works is

x = 9 and y = 3,

with a = 9. Therefore, the man bought 9 apples at 9 cents each, and 3 oranges
at 6 cents each.

3.2.8 Problem 8

The enrollment in a number theory class consists of sophomores, juniors, and
backward seniors. If each sophomore contributes $1.25, each junior $.90, and
each senior $.50, the instructor will have a fund of $25. There are 26 students;
how many of each?

Solution. Let x be the number of sophomores, y the number of juniors, and z
the number of seniors. Then we have the following system of equations:

x+ y + z = 26, (3.1)

125x+ 90y + 50z = 2500. (3.2)

Multiplying (3.1) by 50 and subtracting from (3.2) gives the equation

75x+ 40y = 1200.

Dividing by 5 gives 15x+ 8y = 240. A particular solution is (0, 30), so we have
the general solution

x = 8t and y = 30− 15t.

If x and y are to be positive, we see that 0 < t < 2, so that t = 1. Therefore,
there are 8 sophomores, 15 juniors, and 3 seniors.

3.2.9 Problem 9

The following problem first appeared in an Indian book written around 850 AD.
Three merchants found a purse along the way. One of them said, “If I secure
this purse, I shall become twice as rich as both of you with your money on
hand.” Then the second said, “I shall become thrice as rich as both of you.”
The third man said, “I shall become five times as rich as both of you.” How
much did each merchant have, and how much was in the purse?



18 CHAPTER 3. LINEAR DIOPHANTINE EQUATIONS

Solution. Let the three merchants each have x, y, and z units of currency,
respectively, and let w be the amount of money in the purse. We have the
following system of equations.

x+ w = 2(y + z),

y + w = 3(x+ z),

z + w = 5(x+ y).

Rearranging and simplifying then gives

x− 2y − 2z + w = 0,

−3x+ y − 3z + w = 0,

−5x− 5y + z + w = 0.

Solving these simultaneously, we find that the system reduces to

15x− w = 0,

5y − w = 0,

3z − w = 0.

So the purse has 15 times as much money as the first merchant, the second mer-
chant has 3 times as much money as the first merchant, and the third merchant
has 5 times as much money as the first merchant. So the three merchants and
the purse have, respectively, x, 3x, 5x, and 15x units of currency, for an integer
x. Any positive value for x will produce a valid solution.

3.2.10 Problem 10

A man cashes a check for d dollars and c cents at a bank. Assume that the
teller by mistake gives the man c dollars and d cents. Assume that the man
does not notice the error until he has spent 23 cents. Assume further that he
then notices that he has 2d dollars and 2c cents. Assume still further that he
asks you what amount the check was for. Assuming that you can accept all the
assumptions, what is the answer?

Solution. Let the check be for T cents. The man starts with c dollars and d
cents. After spending 23 cents, he has 2d dollars and 2c cents. This gives

100d+ c = T,

100c+ d− 23 = 100(2d) + 2c,

or, rearranging,

c+ 100d = T,

98c− 199d = 23.

By inspection, a particular solution to 98c − 199d = 23 is c = 51 and d = 25.
The general solution is then

c = 51 + 199t and d = 25 + 98t.

We know 0 ≤ c < 100 so the only possible value for t is t = 0. Therefore the
check was written for T = 25 · 100 + 51 = 2551 cents or $25.51.



Chapter 4

Congruences

4.1 Exercises

4.1.1 Exercise 1

True or false? 91 ≡ 0 (mod 7). 3 + 5 + 7 ≡ 5 (mod 10). −2 ≡ 2 (mod 8).
112 ≡ 1 (mod 3).

Solution. Only the third congruence is false.
Since 91 = 7 · 13 we have 7 | (91− 0) so that 91 ≡ 0 (mod 7).
3 + 5 + 7 = 15 and 10 | (15− 5) so 3 + 5 + 7 ≡ 5 (mod 10).
It is not true that −2 ≡ 2 (mod 8), since 8 - −4.
And since 3 | (121− 1), we indeed have 112 ≡ 1 (mod 3).

4.1.2 Exercise 2

Complete the proof that a ≡ b (mod m) if and only if there is an integer k such
that a = b+ km.

Solution. In the text, Dudley proves the left-to-right implication. So we need to
show the converse. Suppose that a = b+km for some integer k. Then a−b = km
and we have by the definition of divisibility that m | (a − b). Therefore a ≡ b
(mod m).

4.1.3 Exercise 3

To what least residue (mod 11) is each of 23, 29, 31, 37, and 41 congruent?

Solution. We have

23 ≡ 1 (mod 11),

29 ≡ 7 (mod 11),

31 ≡ 9 (mod 11),

37 ≡ 4 (mod 11),

and

41 ≡ 8 (mod 11).

19
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4.1.4 Exercise 4

Say “n is odd” in three other ways.

Solution. From the theorems in the text, n is odd if and only n ≡ 1 (mod 2), if
and only if n = 2k+ 1 for some integer k, if and only if n has remainder 1 when
divided by 2.

4.1.5 Exercise 5

Prove that p | a if and only if a ≡ 0 (mod p).

Proof. This is immediate from the definition of congruence, since p | a if and
only if p | (a− 0).

4.1.6 Exercise 6

Prove that a ≡ a (mod m) for all integers a.

Proof. Since any positive integer m must divide 0, we have m | (a− a) so that
a ≡ a (mod m).

4.1.7 Exercise 7

Prove that for all integers a and b, if a ≡ b (mod m), then b ≡ a (mod m).

Proof. If a ≡ b (mod m) then a − b = km for some integer k. Then we also
have b− a = (−k)m so that b ≡ a (mod m).

4.1.8 Exercise 8

Prove that for integers a, b, and c, if a ≡ b (mod m) and b ≡ c (mod m), then
a ≡ c (mod m).

Proof. By definition, there are integers s and t with a− b = sm and b− c = tm.
So

a− c = (a− b) + (b− c) = sm+ tm = (s+ t)m,

hence m | (a− c).

4.1.9 Exercise 9

Prove that for integers a, b, c, and d, if a ≡ b (mod m) and c ≡ d (mod m),
then a+ c ≡ b+ d (mod m).

Proof. We have a = b+ sm and c = d+ tm for integers s and t. So

a+ c = (b+ sm) + (d+ tm) = (b+ d) + (s+ t)m,

and we see that a+ c ≡ b+ d (mod m).
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4.1.10 Exercise 10

Construct a like example for modulus 10 to show that ab ≡ ac (mod m) and
a 6≡ 0 (mod m) do not together imply b ≡ c (mod m).

Solution. We have 5 · 2 ≡ 5 · 4 (mod 10) and 5 6≡ 0 (mod 10), but 2 6≡ 4
(mod 10).

4.1.11 Exercise 11

What values of x satisfy

(a) 2x ≡ 4 (mod 7)?

Solution. Since (2, 7) = 1, we are allowed (by Theorem 4) to cancel a
factor of 2 on each side to get x ≡ 2 (mod 7).

(b) 2x ≡ 1 (mod 7)?

Solution. Since 1 ≡ 8 (mod 7), we can again cancel a factor of 2 to get
x ≡ 4 (mod 7).

4.1.12 Exercise 12

Which x will satisfy 2x ≡ 4 (mod 6)?

Solution. We have (2, 6) = 2. Applying Theorem 5, we get

x ≡ 2 (mod 3).

4.2 Problems

4.2.1 Problem 1

Find the least residue of 1492 (mod 4), (mod 10), and (mod 101).

Solution. Since 1492 = 4 ·373 we have 1492 ≡ 0 (mod 4). Since its last decimal
digit is 2, we know that 1492 ≡ 2 (mod 10). Finally, since 1492 = 14 · 101 + 78,
we have 1492 ≡ 78 (mod 101).

4.2.2 Problem 2

Find the least residue of 1789 (mod 4), (mod 10), and (mod 101).

Solution. We have 1789 ≡ 1 (mod 4), 1789 ≡ 9 (mod 10), and 1789 ≡ 72
(mod 101).

4.2.3 Problem 3

Prove or disprove that if a ≡ b (mod m), then a2 ≡ b2 (mod m).

Solution. This is true. The proof is immediate from part (e) of Lemma 1.
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4.2.4 Problem 4

Prove or disprove that if a2 ≡ b2 (mod m), then a ≡ b or −b (mod m).

Solution. This is not true in general. For a counterexample, take m = 12. We
have 22 ≡ 42 (mod 12) but 2 6≡ 4 (mod 12) and 2 6≡ −4 ≡ 8 (mod 12).

4.2.5 Problem 5

Find all m such that 1066 ≡ 1776 (mod m).

Solution. We need m to divide 1776 − 1066 = 710. Since 710 = 2 · 5 · 71, the
possible values of m are 1, 2, 5, 10, 71, 142, 355, and 710.

4.2.6 Problem 6

Find all m such that 1848 ≡ 1914 (mod m).

Solution. 1914−1848 = 66 which factors as 66 = 2 ·3 ·11, so the possible values
for m are 1, 2, 3, 6, 11, 22, 33, or 66.

4.2.7 Problem 7

If k ≡ 1 (mod 4), then what is 6k + 5 congruent to (mod 4)?

Solution. From Lemma 1, we have

6k + 5 ≡ 6 · 1 + 5 ≡ 11 ≡ 3 (mod 4).

4.2.8 Problem 8

Show that every prime (except 2) is congruent to 1 or 3 (mod 4).

Solution. Let p be a prime bigger than 2. Since no prime (other than 2) is
divisible by 2, we cannot have p = 4k or p = 4k + 2 for an integer k. So
4 - p and 4 - (p − 2). Therefore p 6≡ 0 (mod 4) and p 6≡ 2 (mod 4). The only
remaining possibilities are p ≡ 1 or 3 (mod 4).

4.2.9 Problem 9

Show that every prime (except 2 or 3) is congruent to 1 or 5 (mod 6).

Solution. Let p be a prime larger than 3. If p ≡ 0 (mod 6), then 6 | p which
is impossible. If p ≡ 2 (mod 6) then p = 6k + 2 = 2(3k + 1) for an integer k,
which is impossible. If p ≡ 3 (mod 6) then p = 6k + 3 = 3(2k + 1), which is
impossible. And if p ≡ 4 (mod 6) then p = 6k + 4 = 2(3k + 2), which is again
impossible. The only possibilities are p ≡ 1 or 5 (mod 6).
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4.2.10 Problem 10

What can primes (except 2, 3, or 5) be congruent to (mod 30)?

Solution. Let p be a prime greater than 5 and let k be a nonnegative integer
less than 30. If p ≡ k (mod 30) then p = 30n + k for some integer n. From
this we see that p cannot be prime (larger than 5) unless (30, k) = 1 (since the
factors of 30 are 2, 3, and 5, and primes larger than 5 cannot be divisible by
these numbers). So the possible values for k are those that are relatively prime
to 30, namely 1, 7, 11, 13, 17, 19, 23, or 29.

4.2.11 Problem 11

In the multiplication 31415 · 92653 = 2910 93995, one digit in the product is
missing and all the others are correct. Find the missing digit without doing the
multiplication.

Solution. By repeatedly summing the digits, we see that

31415 · 92653 ≡ 14 · 25 ≡ 5 · 7 ≡ 35 ≡ 8 (mod 9).

Using k in place of the missing digit in the product, we have

2910k93995 ≡ 47 + k ≡ 11 + k ≡ 2 + k (mod 9).

So 2 + k ≡ 8 (mod 9) and we see that k must be 6.

4.2.12 Problem 12

Show that no square has as its last digit, 2, 3, 7, or 8.

Proof. Let n be any nonnegative integer. Modulo 10, there are only 10 possible
least residues for n, so we may simply square each of them and reduce:

n ≡ 0 (mod 10) ⇒ n2 ≡ 0 (mod 10),

n ≡ 1 (mod 10) ⇒ n2 ≡ 1 (mod 10),

n ≡ 2 (mod 10) ⇒ n2 ≡ 4 (mod 10),

n ≡ 3 (mod 10) ⇒ n2 ≡ 9 (mod 10),

n ≡ 4 (mod 10) ⇒ n2 ≡ 6 (mod 10),

n ≡ 5 (mod 10) ⇒ n2 ≡ 5 (mod 10),

n ≡ 6 (mod 10) ⇒ n2 ≡ 6 (mod 10),

n ≡ 7 (mod 10) ⇒ n2 ≡ 9 (mod 10),

n ≡ 8 (mod 10) ⇒ n2 ≡ 4 (mod 10),

n ≡ 9 (mod 10) ⇒ n2 ≡ 1 (mod 10).

We see in each case that n2 can only have 0, 1, 4, 5, 6, or 9 as its last digit.
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4.2.13 Problem 13

What can the last digit of a fourth power be?

Solution. We simply raise each least residue (mod 10) to the fourth power,
similar to what we did in the previous problem. Modulo 10, we have 04 = 0,
14 = 1, 24 = 16 ≡ 6, 34 = 81 ≡ 1, and so on. After going through all the digits,
we can see that the only possibilities for the last digit of a fourth power are 0,
1, 5, or 6.

4.2.14 Problem 14

Show that the difference of two consecutive cubes is never divisible by 3.

Proof. Let n be an integer. We have

(n+ 1)3 − n3 = n3 + 3n2 + 3n+ 1− n3

= 3n2 + 3n+ 1

≡ 1 (mod 3).

Since (n + 1)3 − n3 always has a remainder of 1 when divided by 3, it cannot
be divisible by 3.

4.2.15 Problem 15

Show that the difference of two consecutive cubes is never divisible by 5.

Proof. Let n be an integer. As in the previous problem,

(n+ 1)3 − n3 = 3n2 + 3n+ 1.

We find that

3(0)2 + 3(0) + 1 = 1 ≡ 1 (mod 5),

3(1)2 + 3(1) + 1 = 7 ≡ 2 (mod 5),

3(2)2 + 3(2) + 1 = 19 ≡ 4 (mod 5),

3(3)2 + 3(3) + 1 = 37 ≡ 2 (mod 5),

and

3(4)2 + 3(4) + 1 = 61 ≡ 1 (mod 5).

So, if n is congruent (mod 5) to 0, 1, 2, 3, or 4, then (n + 1)3 − n3 is not
divisible by 5. But n must be congruent to one of these, so we have checked
every case.
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4.2.16 Problem 16

Show that

dk10k + dk−110k−1 + · · ·+ d110 + d0

≡ d0 − d1 + d2 − d3 + · · ·+ (−1)kdk (mod 11) (4.1)

and deduce a test for divisibility by 11.

Solution. Since 10 ≡ −1 (mod 11), it follows that 10n ≡ 1 (mod 11) when n is
even and 10n ≡ −1 (mod 11) when n is odd. So any positive integer is congruent
(mod 11) to the sum of its digits but with alternating signs. Therefore (4.1)
holds.

To test for divisibility by 11, simply find the sum of every other digit, and
subtract the sum of the remaining digits. Then this difference is divisible by 11
if and only if the original number is as well.

For example, 37,536,760,679 is divisible by 11 since

3 + 5 + 6 + 6 + 6 + 9 = 35,

7 + 3 + 7 + 0 + 7 = 24,

and 35− 24 = 11 is divisible by 11.

4.2.17 Problem 17

A says, “27,182,818,284,590,452 is divisible by 11.” B says, “No, it isn’t.” Who
is right?

Solution. We may simply use the divisibility rule found in the previous problem.
The cross-digit sums are

2 + 1 + 2 + 1 + 2 + 4 + 9 + 4 + 2 = 27

and
7 + 8 + 8 + 8 + 8 + 5 + 0 + 5 = 49.

Since 49 − 27 = 22 and 11 | 22, we see that the original number is divisible by
11. Therefore A’s assertion is correct.

4.2.18 Problem 18

A palindrome is a number that reads the same backward as forward. Examples
are 22, 1331, and 935686539.

(a) Prove that every four-digit palindrome is divisible by 11.

Proof. Let n be a four-digit palindrome having decimal representation
abba, where a and b represent digits. By the divisibility test established
in Problem 4.2.16, n must be congruent to a − b + b − a = 0 (mod 11).
Therefore 11 | n.

(b) What about six-digit palindromes?

Solution. The previous proof is easily adapted to this case. In fact, any
palindrome with an even number of digits will be divisible by 11.
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4.2.19 Problem 19

Show that if n ≡ 4 (mod 9), then n cannot be written as the sum of three cubes.

Proof. By cubing each integer from 0 to 8, we see that the only possible least
residues for cubes are 0, 1, or 8. Suppose we can select three numbers from 0,
1, and 8 such that their sum is congruent to 4 (mod 9). 1 + 1 + 1 is too small,
so at least one of the numbers has to be 8. We check the possibilities:

0 + 1 + 8 = 9 ≡ 0 (mod 9),

1 + 1 + 8 = 10 ≡ 1 (mod 9),

0 + 8 + 8 = 16 ≡ 7 (mod 9),

1 + 8 + 8 = 17 ≡ 8 (mod 9),

8 + 8 + 8 = 24 ≡ 7 (mod 9).

So, there is no such sum congruent to 4. This shows that n cannot be written
as the sum of three cubes.

4.2.20 Problem 20

Show that for k > 0 and m ≥ 1, x ≡ 1 (mod mk) implies xm ≡ 1 (mod mk+1).

Proof. Note that for each m ≥ 1,

xm − 1 = (x− 1)(xm−1 + xm−2 + · · ·+ x+ 1). (4.2)

Also note that, since mk | (x− 1), we also have m | (x− 1) so that

xm−1 + xm−2 + · · ·+ x+ 1 ≡
m terms︷ ︸︸ ︷

1 + 1 + · · ·+ 1 + 1 ≡ m ≡ 0 (mod m).

Therefore m | (xm−1 + xm−2 + · · ·+ 1) and we can write

xm−1 + xm−2 + · · ·+ x+ 1 = ms

for some integer s. And mk | (x− 1) so x− 1 = mkt for an integer t. By (4.2),
we therefore have

xm − 1 = (mkt)(ms) = mk+1st.

Hence mk+1 | (xm − 1) as required to complete the proof.
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Linear Congruences

5.1 Exercises

5.1.1 Exercise 1

Construct congruences modulo 12 with no solutions, just one solution, and more
than one solution.

Solution. The congruence 3x ≡ 4 (mod 12) has no solution since 3x is always
congruent to 0, 3, 6, or 9 (mod 12) and never 4. The congruence 5x ≡ 2
(mod 12) has one solution, x = 10. The congruence 2x ≡ 4 (mod 12) has two
solutions, x = 2 and x = 8.

5.1.2 Exercise 2

Which congruences have no solutions?

(a) 3x ≡ 1 (mod 10),

(b) 4x ≡ 1 (mod 10),

(c) 5x ≡ 1 (mod 10),

(d) 6x ≡ 1 (mod 10),

(e) 7x ≡ 1 (mod 10).

Solution. Since 3 · 7 = 21 ≡ 1 (mod 10), both of the congruences 3x ≡ 1 and
7x ≡ 1 (mod 10) have a solution.

The other three congruences do not have solutions.

5.1.3 Exercise 3

After Exercise 5.1.2, can you guess a criterion for telling when a congruence has
no solutions?

Solution. A necessary and sufficient condition that a congruence

ax ≡ b (mod m)

27
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has no solutions is that (a,m) does not divide b. This will be proven in the
text.

5.1.4 Exercise 4

Solve

(a) 8x ≡ 1 (mod 15)

Solution. Since (8, 15) = 1, there is only one solution (by Lemma 2). We
have 8x ≡ 16 (mod 15) so that x ≡ 2 (mod 15).

(b) 9x+ 10y = 11

Solution. From the equation we get the congruence 9x ≡ 11 (mod 10).
Since 11 ≡ 81 (mod 10), we have 9x ≡ 81 (mod 10) from which we get
x ≡ 9 (mod 10). This is the only solution to the congruence. Thus

x = 9 + 10t

gives all possible values for x. Substituting this back into the equation,
we get

9(9 + 10t) + 10y = 11,

which gives

y = −7− 9t.

So the general solution is x = 9 + 10t and y = −7− 9t.

5.1.5 Exercise 5

Determine the number of solutions of each of the following congruences:

3x ≡ 6 (mod 15), 4x ≡ 8 (mod 15), 5x ≡ 10 (mod 15),

6x ≡ 11 (mod 15), 7x ≡ 14 (mod 15).

Solution. We will use Lemma 3.
(3, 15) = 3 and 3 | 6, so 3x ≡ 6 (mod 15) has 3 solutions.
(4, 15) = 1, so 4x ≡ 8 (mod 15) has only one solution.
(5, 15) = 5 and 5 | 10, so 5x ≡ 10 (mod 15) has 5 solutions.
(6, 15) = 3 but 3 - 11 so the congruence 6x ≡ 11 (mod 15) has no solutions.
Finally, since (7, 15) = 1, the congruence 7x ≡ 14 (mod 15) has one solution.

5.1.6 Exercise 6

Find all of the solutions of 5x ≡ 10 (mod 15).

Solution. Since (5, 10) = 5, we may divide by 5 to get x ≡ 2 (mod 3). So the
solutions modulo 15 are 2, 5, 8, 11, and 14.
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5.1.7 Exercise 7

Solve the rest of the congruences in Exercise 5.1.5.

Solution. From 3x ≡ 6 (mod 15) we get x ≡ 2 (mod 5), so that the three
solutions modulo 15 are 2, 7, and 12.

For 4x ≡ 8 (mod 15) we get the unique solution x = 2.
As we saw before, 6x ≡ 11 (mod 15) has no solutions since (6, 15) - 11.
Lastly, for 7x ≡ 14 (mod 15) we have the unique solution x = 2.

5.1.8 Exercise 8

Verify that 52 satisfies each of the three congruences, x ≡ 1 (mod 3), x ≡ 2
(mod 5), and x ≡ 3 (mod 7).

Solution. Since

52 = 17 · 3 + 1 = 10 · 5 + 2 = 7 · 7 + 3,

we see that each congruence is satisfied.

5.2 Problems

5.2.1 Problem 1

Solve each of the following:

2x ≡ 1 (mod 17). 3x ≡ 1 (mod 17).

3x ≡ 6 (mod 18). 40x ≡ 777 (mod 1777).

Solution. For the first congruence, we have 2x ≡ 1 ≡ 18 (mod 17) so x ≡ 9
(mod 17). This is the only solution, since (2, 17) = 1.

For the second, we have 3x ≡ 1 ≡ 18 (mod 17) so x ≡ 6 (mod 17) and
again, this solution is unique.

For the third congruence, we may divide by the greatest common divisor to
get x ≡ 2 (mod 6). So the 3 solutions modulo 18 are 2, 8, and 14.

Lastly, (40, 1777) = 1 so we do have a unique solution. Since

40x ≡ 777 ≡ −1000 (mod 1777),

we may divide by 40 to get

x ≡ −25 (mod 1777).

Therefore x = 1752 is the only least residue satisfying the congruence.

5.2.2 Problem 2

Solve each of the following:

2x ≡ 1 (mod 19). 3x ≡ 1 (mod 19).

4x ≡ 6 (mod 18). 20x ≡ 984 (mod 1984).
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Solution. For the first congruence, we have 2x ≡ 1 ≡ 20 (mod 19) so that
x ≡ 10 (mod 19), and this is the only solution.

For the second, we have 3x ≡ 1 ≡ 39 (mod 19) so x ≡ 13 (mod 19), and
this is again the only solution.

For the third, we get 2x ≡ 3 ≡ 12 (mod 9) so that x ≡ 6 (mod 9). The two
solutions (mod 18) are then 6 and 15.

Finally, for the last congruence, we may divide by 4 to get 5x ≡ 246
(mod 496). So 5x ≡ −250 (mod 496) and we get x ≡ −50 (mod 496). The
four solutions modulo 1984 are then x = 446, 942, 1438, and 1934.

5.2.3 Problem 3

Solve the systems

(a) x ≡ 1 (mod 2), x ≡ 1 (mod 3).

Solution. If x ≡ 1 (mod 2), then

x = 1 + 2k1 for some integer k1.

So if x ≡ 1 (mod 3) then 1 + 2k1 ≡ 1 (mod 3) or k1 ≡ 0 (mod 3). So
k1 = 3k2 for some k2. Therefore

x = 1 + 6k2, or x ≡ 1 (mod 6).

By the Chinese Remainder Theorem, this is the only solution modulo
6.

(b) x ≡ 3 (mod 5), x ≡ 5 (mod 7), x ≡ 7 (mod 11).

Solution. From the first congruence we get

x = 3 + 5k1.

So by the second congruence we have 3 + 5k1 ≡ 5 (mod 7) and solving
this gives k1 ≡ 6 (mod 7), so that

x = 3 + 5(6 + 7k2) = 33 + 35k2.

Finally, using the last congruence we get 33 + 35k2 ≡ 7 (mod 11) or
2k2 ≡ 7 (mod 11). Solving this gives k2 ≡ 9 (mod 11), so we get

x = 33 + 35(9 + 11k3) = 348 + 385k3.

So, x ≡ 348 (mod 385) and this solution is unique modulo 385.

(c) 2x ≡ 1 (mod 5), 3x ≡ 2 (mod 7), 4x ≡ 3 (mod 11).

Solution. The first congruence gives x = 3+5k1 for some k1. Substituting
this into the second congruence gives k1 = 7k2, so that x = 3+35k2. Using
the third congruence, we get k2 = 3 + 11k3. So

x = 108 + 385k3.

Therefore x ≡ 108 (mod 385).
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5.2.4 Problem 4

Solve the systems

(a) x ≡ 1 (mod 2), x ≡ 2 (mod 3).

Solution. By inspection, we see that x ≡ 5 (mod 6) is a solution, and by
the Chinese Remainder Theorem this is the only solution.

(b) x ≡ 2 (mod 5), 2x ≡ 3 (mod 7), 3x ≡ 4 (mod 11).

Solution. Using the same technique as in the previous problem, we find
that x ≡ 82 (mod 385).

(c) x ≡ 31 (mod 41), x ≡ 59 (mod 26).

Solution. Again, using the same familiar method as before we get x ≡ 605
(mod 1066).

5.2.5 Problem 5

What possibilities are there for the number of solutions of a linear congruence
(mod 20)?

Solution. By Theorem 1, the congruence ax ≡ b (mod 20) has (20, a) solutions,
provided that (20, a) | b. So every divisor of 20, along with 0, is a possibility for
the number of solutions: 0, 1, 2, 4, 5, 10, and 20.

5.2.6 Problem 6

Construct linear congruences modulo 20 with no solutions, just one solution,
and more than one solution. Can you find one with 20 solutions?

Solution. The linear congruence 2x ≡ 3 (mod 20) has no solutions since (2, 20) -
3. The congruence 3x ≡ 1 (mod 20) has exactly one solution, x = 7. The
congruence 2x ≡ 8 (mod 20) has more than one solution: x = 4 and x = 14.

The linear congruence 0x ≡ 0 (mod 20) has 20 solutions.

5.2.7 Problem 7

Solve 9x ≡ 4 (mod 1453).

Solution. We have 9x ≡ 4 ≡ −1449 (mod 1453) and dividing by 9 gives

x ≡ −161 ≡ 1292 (mod 1453).

This solution is unique, modulo 1453.
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5.2.8 Problem 8

Solve 4x ≡ 9 (mod 1453).

Solution. Since 4x ≡ 9 ≡ −1444 (mod 1453), dividing by 4 gives

x ≡ −361 ≡ 1092 (mod 1453).

This is the only solution.

5.2.9 Problem 9

Solve for x and y:

(a) x+ 2y ≡ 3 (mod 7), 3x+ y ≡ 2 (mod 7).

Solution. The first congruence gives x ≡ 3 + 5y (mod 7). Substituting
into the second congruence, we get

3(3 + 5y) + y ≡ 2 (mod 7),

and simplifying gives
y ≡ 0 (mod 7).

Therefore the solution to the system is

x ≡ 3 and y ≡ 0 (mod 7).

(b) x+ 2y ≡ 3 (mod 6), 3x+ y ≡ 2 (mod 6).

Solution. Solving for x in the first congruence gives x ≡ 3 + 4y (mod 6).
Substituting into the second gives

3(3 + 4y) + y ≡ 2 (mod 6),

so
y ≡ 5 (mod 6).

Therefore
x ≡ 5 and y ≡ 5 (mod 6).

5.2.10 Problem 10

Solve for x and y:

(a) x+ 2y ≡ 3 (mod 9), 3x+ y ≡ 2 (mod 9).

Solution. Using the same method as in the previous problem, we get

x ≡ 2 (mod 9) and y ≡ 5 (mod 9).

(b) x+ 2y ≡ 3 (mod 10), 3x+ y ≡ 2 (mod 10).

Solution. The first congruence gives x ≡ 3+8y (mod 10) and substituting
into the second produces

3(3 + 8y) + y ≡ 2 (mod 10)

which simplifies to
5y ≡ 3 (mod 10).

Since (5, 10) = 5 and 5 - 3, this congruence has no solutions. Therefore
the original system of congruences has no solutions.
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5.2.11 Problem 11

When the marchers in the annual Mathematics Department Parade lined up 4
abreast, there was 1 odd person; when they tried 5 in a line, there were 2 left
over; and when 7 abreast, there were 3 left over. How large is the Department?

Solution. If x is the size of the department, then we have the following system
of congruences:

x ≡ 1 (mod 4),

x ≡ 2 (mod 5),

x ≡ 3 (mod 7).

From the first congruence we have x = 1 + 4k1 for some k1. Then 1 + 4k1 ≡ 2
(mod 5) which gives k1 ≡ 4 (mod 5) or k1 = 4 + 5k2. Then

x = 1 + 4(4 + 5k2) = 17 + 20k2.

Then 17 + 20k2 ≡ 3 (mod 7), or k2 ≡ 0 (mod 7). Therefore k2 = 7k3 and we
have x = 17 + 140k3. So the general solution is

x ≡ 17 (mod 140).

So the Department could consist of 17 people, or 157 people, or 297 people, or
in general, 17 + 140t people for some integer t ≥ 0.

5.2.12 Problem 12

Find a multiple of 7 that leaves the remainder 1 when divided by 2, 3, 4, 5, or
6.

Solution. We want to find x so that

x ≡ 1 (mod 2),

x ≡ 1 (mod 3),

x ≡ 1 (mod 4),

x ≡ 1 (mod 5),

x ≡ 1 (mod 6),

x ≡ 0 (mod 7).

The moduli are not relatively prime, however some of these congruences are
redundant. For example, x ≡ 1 (mod 2) and x ≡ 1 (mod 3) together imply
that x ≡ 1 (mod 6). And x ≡ 1 (mod 4) implies x ≡ 1 (mod 2). So the system
reduces to

x ≡ 1 (mod 3),

x ≡ 1 (mod 4),

x ≡ 1 (mod 5),

x ≡ 0 (mod 7).
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Solving this, we find
x ≡ 301 (mod 420),

and, by the Chinese Remainder Theorem, this gives all solutions. Therefore any
number of the form x = 301+420t where t is an integer meets the requirements.

5.2.13 Problem 13

Find the smallest odd n, n > 3, such that 3 | n, 5 | n+ 2, and 7 | n+ 4.

Solution. We want n ≡ 0 (mod 3), n ≡ −2 (mod 5), and n ≡ −4 (mod 7).
Solving this gives

n ≡ 3 (mod 105).

So the smallest such odd integer, bigger than 3, is 3 + 2 · 105 = 213.

5.2.14 Problem 14

Find the smallest integer n, n > 2, such that 2 | n, 3 | n+ 1, 4 | n+ 2, 5 | n+ 3,
and 6 | n+ 4.

Solution. We have the following system of linear congruences:

n ≡ 0 (mod 2),

n ≡ −1 ≡ 2 (mod 3),

n ≡ −2 ≡ 2 (mod 4),

n ≡ −3 ≡ 2 (mod 5),

n ≡ −4 ≡ 2 (mod 6).

The first and last congruence are redundant, since they are implied by the
remaining congruences. So we need to solve

n ≡ 2 (mod 3),

n ≡ 2 (mod 4),

n ≡ 2 (mod 5).

Applying the Chinese Remainder Theorem, we find

n ≡ 2 (mod 60).

The smallest integer n > 2 that works is 62.

5.2.15 Problem 15

Find a positive integer such that half of it is a square, a third of it is a cube,
and a fifth of it is a fifth power.

Solution. Call the integer x. We know that 2 | x, 3 | x, and 5 | x. So we could
try an integer of the form x = 2i3j5k, for some positive integers i, j, and k.
Since x/2 is a square, we must have i ≡ 1 (mod 2). Since x/3 is a cube, i ≡ 0
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(mod 3). And since x/5 is a fifth power, we have i ≡ 0 (mod 5). Taking these
three congruences together, we find that i ≡ 15 (mod 30).

Similarly, for j we must have j ≡ 0 (mod 2), j ≡ 1 (mod 3), and j ≡ 0
(mod 5). This system of congruences admits the solution j ≡ 10 (mod 30).

Finally, for k we have k ≡ 0 (mod 2), k ≡ 0 (mod 3), and k ≡ 1 (mod 5),
which gives k ≡ 6 (mod 30).

So, one possible value for x is

21531056 = 30,233,088,000,000.

This is in fact the smallest such number.

5.2.16 Problem 16

The three consecutive integers 48, 49, and 50 each have a square factor.

(a) Find n such that 32 | n, 42 | n+ 1, and 52 | n+ 2.

Solution. We want

n ≡ 0 (mod 9),

n ≡ −1 ≡ 15 (mod 16),

n ≡ −2 ≡ 23 (mod 25).

Applying the Chinese Remainder Theorem, we find

n ≡ 2223 (mod 3600).

(b) Can you find n such that 22 | n, 32 | n+ 1, and 42 | n+ 2?

Solution. No. Suppose 4 | n and 16 | n+ 2. Then n = 4k and n+ 2 = 16`
for some integers k and `. Then

4k = 16`− 2

or
2 = 16`− 4k = 4(4`− k).

Therefore 4 | 2, which is absurd. This contradiction shows that there is
no such number n.

5.2.17 Problem 17

If x ≡ r (mod m) and x ≡ s (mod m+ 1), show that

x ≡ r(m+ 1)− sm (mod m(m+ 1)).

Proof. Since x ≡ r (mod m) we have x = r + km for some integer k, and
multiplying by m+ 1 on both sides gives

x(m+ 1) = r(m+ 1) + km(m+ 1),
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or

x = r(m+ 1)− xm+ km(m+ 1) (5.1)

And since x ≡ s (mod m+1) we have x = s+`(m+1) for some integer `. Then

xm = sm+ `m(m+ 1). (5.2)

Now substituting (5.2) into (5.1) gives

x = r(m+ 1)− sm+ (k − `)m(m+ 1).

Since k − ` is an integer, we have x ≡ r(m+ 1)− sm (mod m(m+ 1)).

5.2.18 Problem 18

What three positive integers, upon being multiplied by 3, 5, and 7 respectively
and the products divided by 20, have remainders in arithmetic progression with
common difference 1 and quotients equal to remainders?

Solution. Let the three positive integers be x, y, and z. Then there is an integer
r such that

3x = 20r + r = 21r,

5y = 20(r + 1) + (r + 1) = 21(r + 1),

7z = 20(r + 2) + (r + 2) = 21(r + 2),

where 0 ≤ r < 18 (since each remainder must be less than 20). Then x = 7r,
z = 3(r+ 2), and we know that 5 | (r+ 1). So the only possible values for r are
4, 9, or 14. Therefore, we have three sets of solutions:

x = 28, y = 21, and z = 18;

x = 63, y = 42, and z = 33;

x = 98, y = 63, and z = 48.

5.2.19 Problem 19

Suppose that the moduli in the system

x ≡ ai (mod mi), i = 1, 2, . . . , k

are not relatively prime in pairs. Find a condition that the ai must satisfy in
order that the system have a solution.

Solution. Assume that the system has a solution. Fix i and j with i 6= j and
let d = (mi,mj). Since x ≡ ai (mod mi), we have

x = ai + smi, for some integer s, (5.3)

and since x ≡ aj (mod mj), we get

x = aj + tmj , for some integer t. (5.4)
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Combining (5.3) and (5.4) then gives

ai − aj = tmj − smi.

Since d divides the right-hand side of this equation, we also know that d divides
ai − aj . Therefore, the following condition is necessary for the system to have
a solution:

(mi,mj) | ai − aj for each i and j with i 6= j.

In fact this condition is also sufficient, but we omit the proof.

5.2.20 Problem 20

How many multiples of b are there in the sequence

a, 2a, 3a, . . . , ba?

Solution. This question is equivalent to asking how many solutions there are to
the congruence ax ≡ 0 (mod b). Therefore, by Theorem 1, there are exactly
(a, b) multiples of b. Note that every integer divides 0 so there is always at least
one such multiple, namely ba.
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Chapter 6

Fermat’s and Wilson’s
Theorems

6.1 Exercises

6.1.1 Exercise 1

Verify that Fermat’s Theorem is true for a = 2 and p = 5.

Solution. We have ap−1 = 24 = 16 ≡ 1 (mod 5), so the theorem holds.

6.1.2 Exercise 2

Calculate 22 and 2010 (mod 11).

Solution. 22 ≡ 4 (mod 11). To find 2010, we note that 202 = 400 ≡ 4 (mod 11).
Squaring gives 204 ≡ 16 ≡ 5 (mod 11). Squaring again gives 208 ≡ 25 ≡ 3
(mod 11). So

2010 = 208 · 202 ≡ 3 · 4 ≡ 1 (mod 11).

Of course, this result is also guaranteed by Fermat’s Theorem.

6.1.3 Exercise 3

In the proof of Wilson’s Theorem, what are the pairs when p = 11?

Solution. To find the multiplicative inverse of 2, we look for the least residue
satisfying the congruence 2x ≡ 1 (mod 11). Since 1 ≡ 12 (mod 11), we may
divide by 2 to get x ≡ 6 (mod 11). Hence (2, 6) is one such pair. In the same
way we can find the remaining pairs. The complete list of pairs follows:

(2, 6), (3, 4), (5, 9), (7, 8).

39
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6.2 Problems

6.2.1 Problem 1

What is the least residue of

56 (mod 7) 58 (mod 7) 19458 (mod 7)?

Solution. By Fermat’s Theorem, 56 ≡ 1 (mod 7).
58 = 56 · 52 ≡ 1 · 4 ≡ 4 (mod 7).
Again by Fermat, 19456 ≡ 1 (mod 7). Therefore

19458 ≡ 19452 = 52 · 3892 ≡ 4 · 42 = 64 ≡ 1 (mod 7).

6.2.2 Problem 2

What is the least residue of

510 (mod 11) 512 (mod 11) 194512 (mod 11)?

Solution. 510 ≡ 1 (mod 11) by Fermat’s Theorem. So 512 ≡ 52 ≡ 3 (mod 11).
By Fermat, 194510 ≡ 1 (mod 11), so 194512 ≡ 19452 ≡ 92 ≡ 4 (mod 11).

6.2.3 Problem 3

What is the last digit of 7355?

Solution. We want the least residue of 7355 (mod 10). Note that 72 = 49 ≡ 9
(mod 10) and 74 ≡ 81 ≡ 1 (mod 10). So we have

7355 = (74)88 · 73 ≡ 73 ≡ 3 (mod 10).

Therefore the last digit of 7355 is 3.

6.2.4 Problem 4

What are the last two digits of 7355?

Solution. This is handled similarly to the previous problem, except now we are
working modulo 100. 73 = 343 ≡ 43 (mod 100), so 74 ≡ 301 ≡ 1 (mod 100).
We find

7355 = (74)88 · 73 ≡ 73 ≡ 43 (mod 100).

The last two digits are therefore 4 and 3.

6.2.5 Problem 5

What is the remainder when 314162 is divided by 163?

Solution. Since 314 is not a multiple of 163, which is prime, we may apply
Fermat’s Theorem to see that 314162 ≡ 1 (mod 163).
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6.2.6 Problem 6

What is the remainder when 314162 is divided by 7?

Solution. As in the previous problem, since we know 314 is not a multiple of 7,
we have by Fermat that 3146 ≡ 1 (mod 7). Therefore

314162 = (3146)27 ≡ 1 (mod 7).

6.2.7 Problem 7

What is the remainder when 314164 is divided by 165?

Solution. Note that 165 = 3 · 5 · 11. And, after some brief computation, we find

314164 ≡ 1 (mod 3),

314164 ≡ 1 (mod 5),

and

314164 ≡ 9 (mod 11).

We may now use the Chinese Remainder Theorem to solve the system of con-
gruences given by

x ≡ 1 (mod 15) and x ≡ 9 (mod 11).

This system admits the unique solution x ≡ 31 (mod 165). Therefore 31 is the
remainder we seek.

6.2.8 Problem 8

What is the remainder when 20012001 is divided by 26?

Solution. Since 2001 ≡ 25 ≡ −1 (mod 26) we have

20012001 ≡ (−1)2001 ≡ −1 ≡ 25 (mod 26).

Therefore the remainder is 25.

6.2.9 Problem 9

Show that
(p− 1)(p− 2) · · · (p− r) ≡ (−1)rr! (mod p),

for r = 1, 2, . . . , p− 1.

Proof. Fix an integer p > 1. We will prove the statement for all positive r
using induction on r. When r = 1, we have p− 1 ≡ −1 (mod p), and certainly
−1 = (−1)1(1!), so the statement holds in the base case.

Now, suppose the statement holds for r = k with k ≥ 1. Then p − k − 1 ≡
−(k + 1) (mod p) and we have

(p− 1) · · · (p− k)(p− k − 1) ≡ −(−1)kk!(k + 1) ≡ (−1)k+1(k + 1)! (mod p).

Therefore the statement holds for r = k + 1, which completes the proof.
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6.2.10 Problem 10

(a) Calculate (n− 1)! (mod n) for n = 10, 12, 14, and 15.

Solution. Since 9! contains both a factor of 2 and a factor of 5, it follows
that 9! ≡ 0 (mod 10). For exactly the same reason, we get

11! ≡ 0 (mod 12),

13! ≡ 0 (mod 14),

and

14! ≡ 0 (mod 15).

(b) Guess a theorem and prove it.

Solution. The above calculations suggest that (n− 1)! ≡ 0 (mod n) when
n is composite, but we will have to exclude n = 4 since it would otherwise
be a counterexample.

So, we will show that for all n > 4,

(n− 1)! ≡ 0 (mod n) if and only if n is composite.

The left-to-right implication is a consequence of Wilson’s Theorem, so we
will only need to prove the right-to-left direction.

Assume that n > 4 and n = ab where 1 < a < n. There are two cases.
First, if a and b are distinct, then (n − 1)! must contain both a and b as
factors, so that n | (n− 1)!. Therefore (n− 1)! ≡ 0 (mod n) in this case.
The other possibility is that a = b, so that n = a2. In this case, since
n > 4, we know a > 2. Both a and 2a will occur as separate factors in
the expansion of (n − 1)!, so again we have n | (n − 1)!. In either case,
(n− 1)! ≡ 0 (mod n).

6.2.11 Problem 11

Show that 2(p− 3)! + 1 ≡ 0 (mod p).

Proof. We will suppose that p is an odd prime. By Wilson’s Theorem, we know
that (p− 1)! ≡ −1 (mod p). Therefore

(p− 1)(p− 2)(p− 3)! + 1 ≡ 0 (mod p).

But (p− 1)(p− 2) ≡ (−1)(−2) ≡ 2 (mod p). This gives the desired result.

6.2.12 Problem 12

In 1732 Euler wrote: “I derived [certain] results from the elegant theorem, of
whose truth I am certain, although I have no proof: an − bn is divisible by the
prime n+ 1 if neither a nor b is.” Prove this theorem, using Fermat’s Theorem.

Proof. If n+ 1 is prime, then Fermat’s Theorem says that

an ≡ bn ≡ 1 (mod n+ 1),

provided that neither a nor b is a multiple of n+1. Therefore an−bn ≡ 1−1 ≡ 0
(mod n+1), which is equivalent to the statement that n+1 divides an−bn.



6.2. PROBLEMS 43

6.2.13 Problem 13

Note that

6! ≡ −1 (mod 7),

5!1! ≡ 1 (mod 7),

4!2! ≡ −1 (mod 7),

3!3! ≡ 1 (mod 7).

Try the same sort of calculation (mod 11).

Solution. Doing the calculations, we get

10! ≡ −1 (mod 11),

9!1! ≡ 1 (mod 11),

8!2! ≡ −1 (mod 11),

7!3! ≡ 1 (mod 11),

6!4! ≡ −1 (mod 11),

5!5! ≡ 1 (mod 11).

6.2.14 Problem 14

Guess a theorem from the data of Problem 6.2.13, and prove it.

Solution. The calculations seem to suggest that, for any odd prime p,

(p− n)!(n− 1)! ≡ (−1)n (mod p), for 1 ≤ n ≤ p+ 1

2
.

For the proof, we use an inductive argument. The case where n = 1 is simply
Wilson’s Theorem. So assume it holds for n = k, where 1 ≤ k < (p + 1)/2.
Then

(p− k)!(k − 1)! ≡ (−1)k (mod p).

Rewriting the left-hand side, we get

(p− k)(p− k − 1)!(k − 1)! ≡ (−1)k (mod p).

Finally, since p− k ≡ −k (mod p), we may multiply both sides by −1 to get

(p− k − 1)!k! ≡ (−1)k+1 (mod p).

This shows that the statement holds for all n with n = 1, 2, . . . , (p+ 1)/2.

6.2.15 Problem 15

Suppose that p is an odd prime.

(a) Show that

1p−1 + 2p−1 + · · ·+ (p− 1)p−1 ≡ −1 (mod p).
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Proof. By Fermat’s Theorem, we have

1p−1 + 2p−1 + · · ·+ (p− 1)p−1 ≡
p− 1 terms︷ ︸︸ ︷

1 + 1 + · · ·+ 1 (mod p)

≡ p− 1 (mod p)

≡ −1 (mod p).

(b) Show that
1p + 2p + · · ·+ (p− 1)p ≡ 0 (mod p).

Proof. Again, by Fermat we have ap ≡ a (mod p) for all a. So

1p + 2p + · · ·+ (p− 1)p ≡ 1 + 2 + · · ·+ (p− 1) (mod p)

≡ p(p− 1)

2
(mod p).

But (p− 1)/2 is an integer, so p divides the right-hand side. Hence

1p + · · ·+ (p− 1)p ≡ 0 (mod p).

6.2.16 Problem 16

Show that the converse of Fermat’s Theorem is false.

Solution. We need to show that there exist integers a and n with (a, n) = 1
and an−1 ≡ 1 (mod n), such that n is composite. Consider a = 2 and n = 341.
Note that 341 = 11 · 31, and (2, 341) = 1. Since 210 = 1024 ≡ 1 (mod 341), we
have

2340 = (210)34 ≡ 1 (mod 341).

This gives us a counterexample for the converse of Fermat’s Theorem.

6.2.17 Problem 17

Show that for any two different primes p, q,

(a) pq | (ap+q − ap+1 − aq+1 + a2) for all a.

Solution. We have

ap+q − ap+1 − aq+1 + a2 = ap(aq − a)− a(aq − a)

= (ap − a)(aq − a).

By Fermat’s Theorem, we know p | (ap− a) and q | (aq − a), so pq divides
the product.

(b) pq | (apq − ap − aq + a) for all a.

Solution. By Fermat’s Theorem, we know ap ≡ a (mod p). Therefore

apq − ap − aq + a = (ap)q − ap − aq + a

≡ aq − a− aq + a (mod p)

≡ 0 (mod p).

So p | (apq − ap − aq + a). By the same argument, we also have that
q | (apq−ap−aq+a). Since p and q are distinct primes, we have (p, q) = 1
and we may apply Corollary 3 of Section 1 to establish the result.
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6.2.18 Problem 18

Show that if p is an odd prime, then 2p | (22p−1 − 2).

Proof. Observe that

22p−1 − 2 = 2(22p−2 − 1) = 2(4p−1 − 1).

Since p is an odd prime, (p, 4) = 1 and we may apply Fermat’s Theorem to see
that 4p−1 ≡ 1 (mod p). This is enough to show that 2p | (22p−1 − 2).

6.2.19 Problem 19

For what n is it true that

p | (1 + n+ n2 + · · ·+ np−2)? (6.1)

Solution. If n ≡ 0 or n ≡ 1 (mod p) then (6.1) is certainly false. In every other
case, this sum forms a geometric progression:

1 + n+ n2 + · · ·+ np−2 =
np−1 − 1

n− 1
.

By Fermat’s Theorem, we know that if (n, p) = 1 then p divides the numerator
of this fraction. If we can show that p does not also divide the denominator,
then it follows that p must divide the sum. But the only way p | (n − 1) is if
n ≡ 1 (mod p).

Therefore the statement (6.1) is true for all integers n such that n 6≡ 0 and
n 6≡ 1 (mod p).

6.2.20 Problem 20

Show that every odd prime except 5 divides some number of the form 111 . . . 11
(k digits, all ones).

Proof. Fix a prime p > 5 (the case where p = 3 is handled by observing that
3 | 111). Then (10, p) = 1 so 10 6≡ 0 (mod p). And certainly 10 6≡ 1 (mod p)
since, aside from p = 7, we are only considering primes larger than 10. Therefore,
we may apply the result from Problem 6.2.19 to establish that

p | (1 + 10 + 102 + 103 + · · ·+ 10p−2).

This completes the proof.
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Chapter 7

The Divisors of an Integer

7.1 Exercises

7.1.1 Exercise 1

Verify that the table of values for d(n) is correct as far as it goes, and complete
it.

Solution. For small values of n, we can simply test divisibility by each positive
integer up to n/2. The completed table follows.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
d(n) 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5

7.1.2 Exercise 2

What is d(p3)? Generalize to d(pn), n = 4, 5, . . . .

Solution. For any prime p, the divisors of p3 are 1, p, p2, and p3. These are the
only divisors, so d(p3) = 4.

In general, d(pn) = n + 1. For, if pn has a divisor a that is not of the form
pi for some nonnegative i, then this divisor a must contain some prime factor q
distinct from p. But if q | a then q | pn. By Lemma 6 of Section 2, it follows
that q | p as well. Therefore p is a prime which contains a smaller prime as a
factor, which is impossible. This contradiction shows that the only divisors of
pn have the form pi, where i = 0, 1, . . . , n.

7.1.3 Exercise 3

What is d(p3q)? What is d(pnq) for any positive n?

Solution. p3q has as its divisors 1, p, p2, and p3, and also q, pq, p2q, and p3q,
for a total of 8 divisors.

47
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In general, every divisor of pn will be a divisor of pnq, and for each such
divisor, multiplying by q will produce a new divisor. So the factor of q effectively
doubles the number of divisors. Consequently, we have

d(pnq) = 2(n+ 1) = 2n+ 2.

7.1.4 Exercise 4

Calculate d(240).

Solution. Using Theorem 1, we have

d(240) = d(24 · 3 · 5)

= d(24)d(3)d(5)

= 5 · 2 · 2
= 20.

7.1.5 Exercise 5

Verify the table of values for σ(n) is correct as far as it goes, and complete it.

Solution. To compute σ(n), we can list out the divisors of n and then add them
up. For example, for σ(9) we compute 1 + 3 + 9 and get a value of 13. The
completed table follows.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
σ(n) 1 3 4 7 6 12 8 15 13 18 12 28 14 24

7.1.6 Exercise 6

What is σ(p3)? σ(pq), where p and q are different primes?

Solution. For p3 we get

σ(p3) = 1 + p+ p2 + p3 =
p4 − 1

p− 1
.

If p and q are distinct primes, then the divisors are 1, p, q, and pq. So

σ(pq) = 1 + p+ q + pq = (1 + p) + q(1 + p) = (1 + p)(1 + q).

7.1.7 Exercise 7

Show that σ(2n) = 2n+1 − 1.

Solution. The divisors of 2n are 1, 2, 22, . . . , 2n. The sum of these divisors
forms a finite geometric series:

σ(2n) =

n∑
k=0

2k =
2n+1 − 1

2− 1
= 2n+1 − 1.
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7.1.8 Exercise 8

What is σ(pn), n = 1, 2, . . . ?

Solution. Again, we have a geometric series:

σ(pn) =

n∑
k=0

pk =
pn+1 − 1

p− 1
.

7.1.9 Exercise 9

Calculate σ(240).

Solution. From Theorem 2, we get

σ(240) = σ(24 · 3 · 5)

= σ(24)σ(3)σ(5)

= (25 − 1) · 4 · 6
= 31 · 24

= 744.

7.1.10 Exercise 10

Let f be a multiplicative function defined by f(pe) = epe−1, where p is prime
and e ≥ 1. Compute f(n) for n = 13, 14, . . . , 24.

Solution. We know that f(n) = 1 if n is any square-free integer (that is, if
each prime in the factorization of n occurs only to the first power). Other
values can be found using multiplicativity together with the defining formula
f(pe) = epe−1. The values are as follows.

n 13 14 15 16 17 18 19 20 21 22 23 24
f(n) 1 1 1 32 1 6 1 4 1 1 1 12

7.2 Problems

7.2.1 Problem 1

Calculate d(42), σ(42), d(420), and σ(420).

Solution. Since 42 = 2 · 3 · 7, we have

d(42) = 2 · 2 · 2 = 8 and σ(42) = 3 · 4 · 8 = 96.

420 = 22 · 3 · 5 · 7, so

d(420) = 3 · 2 · 2 · 2 = 24 and σ(420) = 7 · 4 · 6 · 8 = 1344.
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7.2.2 Problem 2

Calculate d(540), σ(540), d(5400), and σ(5400).

Solution. 540 = 22 · 33 · 5, so

d(540) = 3 · 4 · 2 = 24 and σ(540) = 7 · 40 · 6 = 1680.

5400 = 23 · 33 · 52, so we get

d(5400) = 4 · 4 · 3 = 48 and σ(5400) = 15 · 40 · 31 = 18600.

7.2.3 Problem 3

Calculate d and σ of 10115 = 5 · 7 · 172 and 100115 = 5 · 20023.

Solution. We have

d(10115) = 2 · 2 · 3 = 12 and σ(10115) = 6 · 8 · 307 = 14736,

and

d(100115) = 2 · 2 = 4 and σ(100115) = 6 · 20024 = 120144.

7.2.4 Problem 4

Calculate d and σ of 10116 = 22 · 32 · 281 and 100116 = 22 · 35 · 103.

Solution. For 10116 we get

d(10116) = 3 · 3 · 2 = 18 and σ(10116) = 7 · 13 · 282 = 25662.

And for 100116, we have

d(100116) = 3 · 6 · 2 = 36

and

σ(100116) = 7 · 36 − 1

3− 1
· 104

= 7 · 364 · 104

= 264992.

7.2.5 Problem 5

Show that σ(n) is odd if n is a power of two.

Proof. This is immediate from Exercise 7.1.7.
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7.2.6 Problem 6

Prove that if f(n) is multiplicative, then so is f(n)/n.

Proof. Let s and t be positive integers with (s, t) = 1. Since f is multiplicative,
we know f(st) = f(s)f(t). Define the function g on the positive integers by

g(n) =
f(n)

n
.

Then

g(st) =
f(st)

st
=
f(s)f(t)

st
=
f(s)

s
· f(t)

t
= g(s)g(t),

so g is multiplicative as well.

7.2.7 Problem 7

What is the smallest integer n such that d(n) = 8? Such that d(n) = 10?

Solution. If d(n) = 8, then n has at most three distinct prime factors. If there
are three distinct prime divisors, then the smallest value would be n = 2 ·3 ·5 =
30. If there are exactly two distinct prime divisors, one would have to have
an exponent of 3, making the smallest value n = 23 · 3 = 24. Lastly, if n has
only a single prime factor, it would have to be raised to the 7th power, giving
n = 27 = 128. From these three possibilities, we see that

the smallest n such that d(n) = 8 is 24.

For d(n) = 10, the reasoning is similar. We either have two distinct prime
factors, one raised to the first power and the other raised to the fourth power,
or only one prime factor, raised to the 9th power. In the first case, the smallest
such n would be n = 24 · 3 = 48, and in the second, n = 29 = 512. Clearly 48 is
the smaller of the two, so

the smallest n such that d(n) = 10 is 48.

7.2.8 Problem 8

Does d(n) = k have a solution n for each k?

Solution. Yes. One possible choice is n = 2k−1, though this is not necessarily
the smallest such n.

7.2.9 Problem 9

In 1644, Mersenne asked for a number with 60 divisors. Find one smaller than
10,000.

Solution. Our solution to the previous problem isn’t quite helpful, since 259 is
considerably larger than 10000. But, by using more prime factors, each with
smaller exponents, we are likely to make the product much smaller. So let us
attempt to find a smaller n with d(n) = 60.

The prime factorization of 60 is 22 · 3 · 5. In order to get a factor of 5 in
d(n), we will need an exponent of at least 4. Likewise, to get a factor of 3, we
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will need an exponent of at least 2. The remaining factors of 2 can be obtained
using exponents of 1. This suggests that we choose

n = 24 · 32 · 5 · 7 = 5040,

so that

d(5040) = 5 · 3 · 2 · 2 = 60.

Therefore 5040 fits our criteria.

7.2.10 Problem 10

Find infinitely many n such that d(n) = 60.

Solution. Since there are infinitely many primes, we may simply choose n = p59,
where p is some prime.

More interesting choices for n can be found by considering more prime fac-
tors. For example, we can write 60 = 10 · 3 · 2, suggesting the choice n = p9q2r
where p, q, and r are distinct primes. Different factorizations of 60 will lead to
different choices of n, as will different choices of the primes.

7.2.11 Problem 11

If p is an odd prime, for which k is 1 + p+ · · ·+ pk odd?

Solution. Let p be an odd prime. Then p ≡ 1 (mod 2), so

1 + p+ p2 + · · ·+ pk ≡ 1 + 1 + 12 + · · ·+ 1k ≡ k + 1 (mod 2).

It follows that 1 + p+ · · ·+ pk is odd if and only if k is even.

7.2.12 Problem 12

For which n is σ(n) odd?

Solution. Take any prime factor p dividing n. First suppose p is an odd prime.
If e is the exponent of p in the prime-power decomposition of n (e ≥ 1), then
we know by the previous problem that σ(pe) is odd if and only if e is even. On
the other hand, if p = 2 then σ(2e) = 2e+1 − 1 is always odd. So the exponent
on 2 makes no difference.

Since σ is multiplicative, we can therefore see that σ(n) will be odd if and
only if every odd prime factor of n occurs with an even exponent in the prime-
power decomposition of n. In other words, if n can be written in the form

n = 2km2, where k ≥ 0, m ≥ 1, and m is odd,

then (and only then) will σ(n) be odd.
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7.2.13 Problem 13

If n is a square, show that d(n) is odd.

Proof. Let n = k2 where k is a positive integer. If k = pe11 · · · perr is the prime-
power decomposition of k, then

d(n) = d(k2) = d(p2e11 ) · · · d(p2err )

= (2e1 + 1) · · · (2er + 1),

and since each factor 2ei + 1 is odd, we see that d(n) must be odd.

7.2.14 Problem 14

If d(n) is odd, show that n is a square.

Proof. If n is not a square, then some exponent e in its prime-power decompo-
sition is odd. Then e+1 is even, and therefore d(n) contains an even factor and
is thus also even. By the contrapositive, this completes the proof.

7.2.15 Problem 15

Observe that 1 + 1/3 = 4/3; 1 + 1/2 + 1/4 = 7/4; 1 + 1/5 = 6/5; 1 + 1/2 + 1/3 +
1/6 = 12/6; 1 + 1/7 = 8/7; and 1 + 1/2 + 1/4 + 1/8 = 15/8. Guess and prove a
theorem.

Solution. Notice that each sum is over the reciprocals of all the divisors of a
number n, and the resulting fraction has a numerator equal to σ(n) (when left
unreduced). This suggests that for each positive integer n,

∑
d|n

1

d
=
σ(n)

n
.

To prove this, fix a particular n. Let the positive divisors of n be f1, . . . , fk,
in order from least to greatest. Observe that for each i with 1 ≤ i ≤ k, we have

fi =
n

fk−i
.

This shows that ∑
d|n

d =
∑
d|n

n

d
.

Using this fact, we have

∑
d|n

1

d
=

1

n

∑
d|n

n

d
=

1

n

∑
d|n

d =
σ(n)

n
.

This completes the proof.



54 CHAPTER 7. THE DIVISORS OF AN INTEGER

7.2.16 Problem 16

Find infinitely many n such that σ(n) ≤ σ(n− 1).

Solution. Let n be any odd prime except 3. Then n− 1 is even and must have
at least three distinct factors, namely 1, 2, and n− 1. So

σ(n) = 1 + n = 2 + (n− 1)

< 1 + 2 + (n− 1)

≤ σ(n− 1)

as desired.

7.2.17 Problem 17

If N is odd, how many solutions does x2 − y2 = N have?

Solution. For any odd N , the equation has exactly 2d(N) distinct integer solu-
tions, as we will now show.

Suppose (x, y) is a solution. Let a = x + y and b = x − y so that N = ab.
Solving this system of equations for x and y gives

x =
1

2
(a+ b) and y =

1

2
(a− b).

Since N is odd, both a and b must be odd, so all integer choices of a and b
produce integer solutions for x and y. Since a could take positive or negative
values, we have 2d(N) possible choices for a.

To show that all 2d(N) possibilities produce distinct pairs of x and y, assume
that a1 and a2 both divide N so that N = a1b1 and N = a2b2. Now if

1

2
(a1 + b1) =

1

2
(a2 + b2) and

1

2
(a1 − b1) =

1

2
(a2 − b2)

then adding these two equations together gives a1 = a2.

7.2.18 Problem 18

Develop a formula for σ2(n), the sum of the squares of the positive divisors of
n.

Solution. The first ten values of σ2 are

n 1 2 3 4 5 6 7 8 9 10
σ2(n) 1 5 10 21 26 50 50 85 91 130

.

Certainly if p is prime then σ2(p) = 1 + p2. Since the divisors of pk are
1, p, . . . , pk, it follows that

σ2(pk) = 1 + p2 + p4 + · · ·+ p2k =
p2(k+1) − 1

p2 − 1
.
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Assuming σ2 is multiplicative, this suggests a general formula. We will now
prove that for all positive integers n, if the prime-power decomposition of n is
n = pe11 p

e2
2 · · · perr , then

σ2(n) = σ2(pe11 )σ2(pe22 ) · · ·σ2(perr ).

Our proof will mimic the proof of Theorem 2 in the text, using induction on r.
For r = 1 the statement is trivial, so suppose it is true for r = k, k ≥ 1. Let n
be any integer having k + 1 distinct prime factors:

n = pe11 p
e2
2 · · · p

ek
k p

ek+1

k+1 .

Let N = pe11 · · · p
ek
k , let p = pk+1 and let e = ek+1 so that n = Npe. If

1, d1, . . . , dt are the positive divisors of N , then the divisors of n can be arranged

1 d1 d2 · · · dt
p d1p d2p · · · dtp
p2 d1p

2 d2p
2 · · · dtp

2

...
...

...
. . .

...
pe d1p

e d2p
e · · · dtp

e.

Summing the squares of these divisors gives

σ2(n) = (1 + d21 + d22 + · · ·+ d2t )(1 + p2 + p4 + · · ·+ p2e)

= σ2(N)σ2(pe).

Now, using the inductive hypothesis, the above becomes

σ2(n) = σ2(pe11 )σ2(pe22 ) · · ·σ2(pke
k)σ2(pk+1e

k+1)

as required to complete the proof.

7.2.19 Problem 19

Guess a formula for

σk(n) =
∑
d|n

dk,

where k is a positive integer.

Solution. The previous problem suggests (and indeed a similar proof will show)
that if n has prime-power decomposition n = pe11 · · · perr , then

σk(n) = σk(pe11 ) · · ·σk(perr ),

where

σk(peii ) = 1 + pki + p2ki + · · ·+ peiki =
p
k(ei+1)
i − 1

pki − 1
,

for each i = 1, 2, . . . , r.
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7.2.20 Problem 20

Show that the product of the positive divisors of n is nd(n)/2.

Solution. Define the arithmetic function f by

f(n) =
∏
d|n

d.

For prime powers n = pe, we have

f(pe) = 1(p)(p2) · · · (pe)
= p1+2+···+e

= pe(e+1)/2

= (pe)(e+1)/2

= nd(n)/2.

Note that nd(n)/2 is always an integer, since d(n) is only odd when n is a perfect
square (shown in Problem 7.2.14).

Now, let n have r distinct prime factors. We will use induction on r to show
that f(n) = nd(n)/2. We have already shown (above) that this is true when
r = 1. Assume that it is true when r = k, for some k ≥ 1. If n has k+1 distinct
prime factors, then n can be written in prime-power form as

n = pe11 p
e2
2 · · · p

ek
k p

ek+1

k+1 .

Now let N = pe11 · · · p
ek
k , let p = pk+1, and let e = ek+1. Then n = Npe.

If 1, d1, d2, . . . , dt are the positive divisors of N , then we may list the positive
divisors of n as follows.

1 d1 d2 · · · dt
p d1p d2p · · · dtp
p2 d1p

2 d2p
2 · · · dtp

2

...
...

...
. . .

...
pe d1p

e d2p
e · · · dtp

e

The product of line i above is

pi−1(d1p
i−1)(d2p

i−1) · · · (dtpi−1) = (pi−1)t+1(d1d2 · · · dt)
= (pi−1)d(N)f(N).

Taking the product of all e+ 1 lines gives

f(n) =
(
1d(N)f(N)

)
·
(
pd(N)f(N)

)
· · ·
(
ped(N)f(N)

)
=
(
p · p2 · · · pe

)d(N)(
f(N)

)e+1

=
(
f(pe)

)d(N)(
f(N)

)d(pe)
.

Applying the inductive hypothesis then gives

f(n) = (pe)d(N)d(pe)/2Nd(N)d(pe)/2

= (pe)d(n)/2Nd(n)/2

= nd(n)/2.

By induction, the formula works for all positive integers n.
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Perfect Numbers

8.1 Exercises

8.1.1 Exercise 1

Verify that 1184 and 1210 are amicable.

Solution. 1184 = 25 · 37 and 1210 = 2 · 5 · 112, so

σ(1184) = σ(25)σ(37) = (26 − 1)(38) = 63 · 38 = 2394

and

σ(1210) = σ(2)σ(5)σ(112) = 3 · 6 · (1 + 11 + 121) = 18 · 133 = 2394.

Since 1184 + 1210 = 2394, we see that the two numbers form an amicable
pair.

8.2 Problems

8.2.1 Problem 1

Verify that 2620, 2924 and 17296, 18416 are amicable pairs.

Solution. 2620 = 22 · 5 · 131 and 2924 = 22 · 17 · 43. We get

σ(2620) = 7 · 6 · 132 = 5544

and
σ(2924) = 7 · 18 · 44 = 5544,

and 2620 + 2924 = 5544, so the two are amicable.
For 17296 we have

σ(17296) = σ(24 · 23 · 47) = 31 · 24 · 48 = 35712

and for 18416 we have

σ(18416) = σ(24 · 1151) = 31 · 1152 = 35712,

and 17296 + 18416 = 35712, so these two are also amicable.

57
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8.2.2 Problem 2

It was long thought that even perfect numbers ended alternately in 6 and 8.
Show that this is wrong by verifying that the perfect numbers corresponding to
the primes 213 − 1 and 217 − 1 both end in 6.

Proof. First note that 28 = 256 ≡ 6 (mod 10) so 216 ≡ 62 ≡ 6 (mod 10), and
212 = 28 · 24 ≡ 6 · 6 ≡ 6 (mod 10).

For p = 13, we have

2p−1(2p − 1) = 212(213 − 1) ≡ 6 · (6 · 2− 1) ≡ 6 (mod 10)

and for p = 17 we have

2p−1(2p − 1) = 216(217 − 1) ≡ 6 · (6 · 2− 1) ≡ 6 (mod 10).

In both cases, we see that the corresponding perfect numbers end in 6.

8.2.3 Problem 3

Classify the integers 2, 3, . . . , 21 as abundant, deficient, or perfect.

Solution. The values of σ(n) for n = 1, . . . , 14 are listed in the table from
Exercise 7.1.5. The remaining values are as follows:

σ(15) = σ(3)σ(5) = 4 · 6 = 24,

σ(16) = σ(24) = 25 − 1 = 31,

σ(17) = 18,

σ(18) = σ(2)σ(32) = 3 · (1 + 3 + 9) = 39,

σ(19) = 20,

σ(20) = σ(22)σ(5) = (23 − 1) · 6 = 42,

σ(21) = σ(3)σ(7) = 4 · 8 = 32.

From these values, we determine that the only perfect number between 2
and 21 is 6. The only abundant numbers between 2 and 21 are 12, 18, and 20.
And the remaining values are all deficient.

8.2.4 Problem 4

Classify the integers 402, 403, . . . , 421 as abundant, deficient, or perfect.

Solution. The calculations for σ(n) are similar to those in the previous problem.
We find that, in this range, there are no perfect numbers and the only abundant
numbers are 402, 408, 414, 416, and 420. The remaining numbers are deficient.
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8.2.5 Problem 5

If σ(n) = kn, then n is called a k-perfect number. Verify that 672 is 3-perfect,
and 2,178,540 = 22 · 32 · 5 · 72 · 13 · 19 is 4-perfect.

Solution. We compute

σ(672) = σ(25)σ(3)σ(7) = 63 · 4 · 8 = 2016 = 3 · 672,

showing that 672 is 3-perfect. For 2,178,540 we get

σ(2 178 540) = σ(22)σ(32)σ(5)σ(72)σ(13)σ(19)

= 7 · 13 · 6 · 57 · 14 · 20

= 8 714 160

= 4 · 2 178 540,

showing that it is 4-perfect.

8.2.6 Problem 6

Show that no number of the form 2a3b is 3-perfect.

Proof. Let n = 2a3b for some nonnegative integers a and b. Then

σ(n) = σ(2a)σ(3b) = (2a+1 − 1) · 3b+1 − 1

2

=
1

2
(2a+13b+1 − 2a+1 − 3b+1 + 1)

=
1

2
(6n− 2a+1 − 3b+1 + 1)

= 3n− 1

2
(2a+1 + 3b+1 − 1).

Now suppose n is 3-perfect. Then σ(n) = 3n and we get

2a+1 + 3b+1 − 1 = 0.

But a, b ≥ 0, so the left-hand side of this equation has to be at least 2+3−1 = 4.
This contradiction shows that no such n is 3-perfect.

8.2.7 Problem 7

Let us say that n is superperfect if and only if σ(σ(n)) = 2n. Show that if
n = 2k and 2k+1 − 1 is prime, then n is superperfect.

Proof. Let n = 2k for some positive integer k and suppose 2k+1 − 1 is prime.
Then

σ(σ(n)) = σ(2k+1 − 1) = (2k+1 − 1) + 1 = 2k+1 = 2n

and n is superperfect.
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8.2.8 Problem 8

It was long thought that every abundant number was even. Show that 945 is
abundant, and find another abundant number of the form 3a · 5 · 7.

Solution. We have

σ(945) = σ(33)σ(5)σ(7) = (1 + 3 + 9 + 27) · 6 · 8 = 40 · 48 = 1920,

and since 1920 > 1890 = 2 · 945, we see that 945 is indeed abundant.

Another odd abundant number is 2835 = 34 · 5 · 7, since

σ(2835) = 5808 > 2 · 2835 = 5670.

8.2.9 Problem 9

In 1575, it was observed that every even perfect number is a triangular number.
Show that this is so.

Proof. Let n be a perfect number, so that n = 2p−1(2p − 1) where p and 2p − 1
are prime. Then we may write

n =
2p(2p − 1)

2
=
k(k + 1)

2
,

where k = 2p − 1 is an integer. This shows that n is triangular.

8.2.10 Problem 10

In 1652, it was observed that

6 = 1 + 2 + 3,

28 = 1 + 2 + 3 + 4 + 5 + 6 + 7,

496 = 1 + 2 + 3 + · · ·+ 31.

Can this go on?

Solution. Yes, every perfect number n can be written as the sum

n = 1 + 2 + 3 + · · ·+ k

for some positive integer k. The reason for this is because every perfect number
is triangular, as was shown in the previous problem, and every triangular number
can be written in the form

n∑
k=1

k =
n(n+ 1)

2
.

This is easy to prove by induction.
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8.2.11 Problem 11

Let

p = 3 · 2e − 1,

q = 3 · 2e−1 − 1,

r = 32 · 22e−1 − 1,

where e is a positive integer. If p, q, and r are all prime, show that 2epq and
2er are amicable.

Proof. We will actually need to assume e ≥ 2 so that p, q, r are odd primes (e = 1
produces 20 and 34, which are not amicable). Let m = 2epq and n = 2er.

Note that p, q, and r must be distinct primes, and all are odd, so the four
numbers 2e, p, q, and r are all pairwise coprime. Then we may compute

σ(m) = σ(2e)σ(p)σ(q)

= (2e+1 − 1)(p+ 1)(q + 1)

= (2e+1 − 1)(3 · 2e)(3 · 2e−1)

= 9 · 22e−1(2e+1 − 1),

and

σ(n) = σ(2e)σ(r)

= (2e+1 − 1)(r + 1)

= 9 · 22e−1(2e+1 − 1).

Since

m+ n = 2e(pq + r)

= 2e((3 · 2e − 1)(3 · 2e−1 − 1) + (9 · 22e−1 − 1))

= 2e(2 · 9 · 22e−1 − 3(2e + 2e−1))

= 2e(9 · 22e − 9 · 2e−1)

= 9 · 22e−1(2e+1 − 1),

we see that σ(m) = σ(n) = m + n and the two numbers m and n form an
amicable pair.

8.2.12 Problem 12

Show that if p > 3 and 2p+ 1 is prime, then 2p(2p+ 1) is deficient.

Proof. Let n = 2p(2p+1), where p and 2p+1 are prime, and p > 3. We compute

σ(n) = σ(2)σ(p)σ(2p+ 1)

= 3(p+ 1)(2p+ 2)

= 3p(2p+ 2) + 3(2p+ 2)

= 3p(2p+ 1) + 3p+ 3(2p+ 2)

= 4p(2p+ 1)− p(2p+ 1) + 3p+ 3(2p+ 2)

= 2n− 2(p2 − 4p− 3).
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Now, since p ≥ 5, it is easy to check that p2 − 4p− 3 > 0. Therefore σ(n) < 2n
and we conclude that n is deficient.

8.2.13 Problem 13

Show that all even perfect numbers end in 6 or 8.

Proof. Let n be an even perfect number. We know that

n = 2p−1(2p − 1), where p and 2p − 1 are prime.

Note that

p ≡ 1 (mod 4) ⇒ 2p−1 = 24k = 16k ≡ 6 (mod 10),

p ≡ 2 (mod 4) ⇒ 2p−1 = 24k+1 ≡ 2 · 6 ≡ 2 (mod 10),

p ≡ 3 (mod 4) ⇒ 2p−1 = 24k+2 ≡ 4 · 6 ≡ 4 (mod 10).

We do not need to consider the case where p ≡ 0 (mod 4) since no prime can
be divisible by 4.

Let us consider the three cases. First, if p ≡ 1 (mod 4), then we get

n ≡ 6(2 · 6− 1) ≡ 6 (mod 10). (8.1)

Second, if p ≡ 2 (mod 4) then we get

n ≡ 2(2 · 2− 1) ≡ 6 (mod 10). (8.2)

Finally, if p ≡ 3 (mod 4) then

n ≡ 4(2 · 4− 1) ≡ 8 (mod 10). (8.3)

Together, 8.1, 8.2, and 8.3 show that every even perfect number must end in 6
or 8, when written in decimal notation.

8.2.14 Problem 14

If n is an even perfect number and n > 6, show that the sum of its digits is
congruent to 1 (mod 9).

Proof. Let n = 2p−1(2p−1) be an even perfect number. We proceed in a similar
fashion as in the previous problem. Since n > 6, we have p ≥ 3. The case where
p = 3 is easily handled since 28 ≡ 1 (mod 9). So assume p ≥ 5.

Since the powers of 2 (mod 9) cycle through six different residues, we will
consider the congruence class of p modulo 6. There are only two cases: either
p ≡ 1 (mod 6) or p ≡ 5 (mod 6). All other cases require that p be either
composite or less than 5.

In the first case, p ≡ 1 (mod 6) so

2p−1 = 26k = (26)k ≡ 1 (mod 9) and 2p ≡ 2 (mod 9).

Therefore
n = 2p−1(2p − 1) ≡ 1(2− 1) ≡ 1 (mod 9).
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In the second case, p ≡ 5 (mod 6) which gives

2p−1 = 26k+4 = (26)k · 24 ≡ 1 · 16 ≡ 7 (mod 9)

and
2p ≡ 14 ≡ 5 (mod 9).

Therefore
n = 2p−1(2p − 1) ≡ 7(5− 1) ≡ 28 ≡ 1 (mod 9).

In both cases, we get n ≡ 1 (mod 9) as required.

8.2.15 Problem 15

If p is odd, show that 2p−1(2p − 1) ≡ 1 + 9p(p− 1)/2 (mod 81).

Proof. Note that 254 ≡ 1 (mod 81) (this can be determined simply by repeat-
edly multiplying by 2 and reducing modulo 81). So the left-hand side of the
congruence is completely determined by the congruence class of p modulo 54.
The right-hand side will depend on the congruence class of p modulo 9. Since
9 | 54, it will suffice to check each odd residue between 1 and 53. This is tedious,
but not difficult.

In each case, we see that the congruence holds. In fact, it holds even when
p is not prime, so long as p is odd.
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Chapter 9

Euler’s Theorem and
Function

9.1 Exercises

9.1.1 Exercise 1

Show that a6 ≡ 1 (mod 14) for all a relatively prime to 14.

Solution. The least residues that are relatively prime to 14 are 1, 3, 5, 9, 11,
and 13. We compute:

36 = 272 ≡ (−1)2 ≡ 1 (mod 14),

56 = 253 ≡ (−3)3 ≡ 1 (mod 14),

96 = (36)2 ≡ 1 (mod 14),

116 ≡ (−3)6 ≡ 1 (mod 14),

and

136 ≡ (−1)6 ≡ 1 (mod 14).

In every case, (a, 14) = 1 implies a6 ≡ 1 (mod 14).

9.1.2 Exercise 2

Verify that Lemma 1 is true if m = 14 and a = 5.

Solution. Again, the relatively prime positive integers less than 14 are 1, 3, 5,
9, 11, and 13.

5 · 1 = 5 ≡ 5 (mod 14),

5 · 3 = 15 ≡ 1 (mod 14),

5 · 5 = 25 ≡ 11 (mod 14),

5 · 9 = 45 ≡ 3 (mod 14),

5 · 11 = 55 ≡ 13 (mod 14),

65
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and

5 · 13 = 65 ≡ 9 (mod 14).

And, certainly, (5, 1, 11, 3, 13, 9) is a permutation of {1, 3, 5, 9, 11, 13}.

9.1.3 Exercise 3

Verify that the entries in the following table are correct.

n 2 3 4 5 6 7 8 9 10
φ(n) 1 2 2 4 2 6 4 6 4

Solution. The verification is straightforward. We simply count the number of
positive integers that are relatively prime to n and less than or equal to n. For
example, when n = 8 the relatively prime residues are 1, 3, 5, and 7, so φ(8) = 4.
The other values are checked in the same way.

9.1.4 Exercise 4

Verify that 3φ(8) ≡ 1 (mod 8).

Solution. Since φ(8) = 4, we have 34 = 92 ≡ 12 ≡ 1 (mod 8).

9.1.5 Exercise 5

Which positive integers are less than 4 and relatively prime to it? What is the
answer if 4 is replaced by 8? By 16? Can you induce a formula for φ(2n),
n = 1, 2, . . . ?

Solution. For 4 the numbers are 1 and 3. For 8 they are 1, 3, 5, and 7. For
16, they are 1, 3, 5, 7, 9, 11, 13, and 15. So we have φ(4) = 2, φ(8) = 4, and
φ(16) = 8.

In general, it looks like φ(2n) = 2n−1 for each positive n. To prove this, note
that there are 2n positive integers less than or equal to 2n. Exactly half of these
numbers will be even and thus not relatively prime to 2n. So

φ(2n) =
1

2
(2n) = 2n−1.

9.1.6 Exercise 6

Verify that the formula of Lemma 2 is correct for p = 5 and n = 2.

Solution. According to Lemma 2, φ(52) = 51(5− 1) = 20. The positive integers
less than or equal to 52 that are not relatively prime to it are 5, 10, 15, 20, and
25, so φ(52) = 25− 5 = 20 and the formula works in this case.

9.1.7 Exercise 7

In the proof of Theorem 2, how many rows are there whose first element is
relatively prime to m?

Solution. There are exactly φ(m) such rows.



9.1. EXERCISES 67

9.1.8 Exercise 8

Calculate φ(74), φ(76), and φ(78).

Solution. Using Theorem 3, we get

φ(74) = φ(2)φ(37) = (1 · 1)(1 · 36) = 36,

φ(76) = φ(22)φ(19) = (2 · 1)(1 · 18) = 36,

and

φ(78) = φ(2)φ(3)φ(13) = (1 · 1)(1 · 2)(1 · 12) = 24.

9.1.9 Exercise 9

Calculate
∑
d|n

φ(d)

(a) For n = 12, 13, 14, 15, and 16.

Solution. For n = 12, we have∑
d|12

φ(d) = φ(1) + φ(2) + φ(3) + φ(4) + φ(6) + φ(12)

= 1 + 1 + 2 + 2 + 2 + 4 = 12.

In the same manner, we can compute the rest of the values. In each case,
we find that ∑

d|n

φ(d) = n.

(b) For n = 2k, k ≥ 1.

Solution. The positive divisors of 2k are 1, 2, 4, . . . , 2k. So

∑
d|2k

φ(d) =

k∑
i=0

φ(2i)

= φ(1) +

k∑
i=1

2i−1

= 1 + (2k − 1) = 2k

= n.

(c) For n = pk, k ≥ 1 and p an odd prime.
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Solution. The positive divisors of n are 1, p, p2, . . . , pk, so

∑
d|pk

φ(d) =

k∑
i=0

φ(pi)

= 1 +

k∑
i=1

pi−1(p− 1)

= 1 +

k∑
i=1

pi −
k∑
i=1

pi−1

= 1 +

(
pk +

k−1∑
i=1

pi

)
−

(
1 +

k−1∑
i=1

pi

)
= pk = n.

9.1.10 Exercise 10

In the proof of Theorem 4, what are the classes Cd for n = 14?

Solution. We have

C1 = {1, 3, 5, 9, 11, 13},
C2 = {2, 4, 6, 8, 10, 12},
C7 = {7},

and

C14 = {14}.

9.1.11 Exercise 11

Check that the number of elements in class Cd is φ(n/d) for n = 12 and n = 14.

Solution. For n = 12:

C1 = {1, 5, 7, 11}, φ(12) = 4,

C2 = {2, 10}, φ(6) = 2,

C3 = {3, 9}, φ(4) = 2,

C4 = {4, 8}, φ(3) = 2,

C6 = {6}, φ(2) = 1,

C12 = {12}, φ(1) = 1.

In each case, we see that Cd has exactly φ(n/d) elements.

Similarly, for n = 14, φ(14) = 6, φ(7) = 6, φ(2) = 1, and φ(1) = 1, and
we see that these numbers match the size of the sets found in the previous
exercise.
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9.2 Problems

9.2.1 Problem 1

Calculate φ(42), φ(420), and φ(4200).

Solution. We have

φ(42) = φ(2)φ(3)φ(7) = 1 · 2 · 6 = 12

φ(420) = φ(22)φ(3)φ(5)φ(7) = 2 · 2 · 4 · 6 = 96

and

φ(4200) = φ(23)φ(3)φ(52)φ(7) = 4 · 2 · 20 · 6 = 960.

9.2.2 Problem 2

Calculate φ(54), φ(540), and φ(5400).

Solution.

φ(54) = φ(2)φ(33) = 1 · 18 = 18,

φ(540) = φ(22)φ(33)φ(5) = 2 · 18 · 4 = 144,

and

φ(5400) = φ(23)φ(33)φ(52) = 4 · 18 · 20 = 1440.

9.2.3 Problem 3

Calculate φ of 10115 = 5 · 7 · 172 and 100115 = 5 · 20023.

Solution.

φ(10115) = φ(5)φ(7)φ(172)

= 4 · 6 · 17(17− 1)

= 24 · 17 · 16

= 6528

and

φ(100115) = φ(5)φ(20023)

= 4 · 20022

= 80088.
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9.2.4 Problem 4

Calculate φ of 10116 = 22 · 32 · 281 and 100116 = 22 · 35 · 103.

Solution.

φ(10116) = φ(22)φ(32)φ(281)

= 2 · 6 · 280

= 3360

and

φ(100116) = φ(22)φ(35)φ(103)

= 2 · 34(2) · 102

= 324 · 102

= 33048.

9.2.5 Problem 5

Calculate a8 (mod 15) for a = 1, 2, . . . , 14.

Solution. Since φ(15) = φ(3)φ(5) = 2 · 4 = 8, we know a8 ≡ 1 (mod 15) for
each a such that (a, 15) = 1. For the remaining values, we have

38 = (34)2 ≡ 62 ≡ 6 (mod 15),

58 = (52)4 ≡ 104 ≡ 102 ≡ 10 (mod 15),

68 = 2838 ≡ 6 · 164 ≡ 6 (mod 15),

98 = (38)2 ≡ 36 ≡ 6 (mod 15),

108 = (104)2 ≡ 102 ≡ 10 (mod 15),

and

128 = 3848 ≡ 6 · (24)4 ≡ 6 (mod 15).

9.2.6 Problem 6

Calculate a8 (mod 16) for a = 1, 2, . . . , 15.

Solution. φ(16) = 8, so a8 ≡ 1 (mod 16) for all a such that (a, 16) = 1. The
remaining values are all even, and since 28 contains a factor of 16, we will get
a8 ≡ 0 (mod 16) for each a such that (a, 16) > 1.

9.2.7 Problem 7

Show that if n is odd, then φ(4n) = 2φ(n).

Proof. Since n is odd, we know (4, n) = 1, so the multiplicativity of φ gives

φ(4n) = φ(4)φ(n) = 2φ(n).
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9.2.8 Problem 8

Perfect numbers satisfy σ(n) = 2n. Which n satisfy φ(n) = 2n?

Solution. There are no positive integers n with φ(n) = 2n, for the simple reason
that there are only n positive integers less than or equal to n in the first place.
So φ(n) ≤ n for all n.

9.2.9 Problem 9

1+2 = (3/2)φ(3), 1+3 = (4/2)φ(4), 1+2+3+4 = (5/2)φ(5), 1+5 = (6/2)φ(6),
1+2+3+4+5+6 = (7/2)φ(7), and 1+3+5+7 = (8/2)φ(8). Guess a theorem.

Solution. For each positive integer n > 1, the sum of the positive integers less
than or equal to n which are relatively prime to n is (n/2)φ(n).

To prove this, let T be the set of positive integers less than or equal to n
and relatively prime to it, so that T = {t1, t2, t3, . . . , tφ(n)}.

Take the number ti for some i. Then (ti, n) = 1 and, by Theorem 4 of
Section 1, there are integers x and y with

tix+ ny = 1.

But by setting a = −x and b = x+ y, this equation becomes

a(n− ti) + bn = 1,

so that (n − ti, n) = 1 and (n − ti) ∈ T . We see that ti ∈ T if and only if
n− ti ∈ T .

Now let S be the sum of the members of T . Then

S = t1 + t2 + t3 + · · ·+ tφ(n). (9.1)

On the other hand, we can also write

S = (n− t1) + (n− t2) + (n− t3) + · · ·+ (n− tφ(n)). (9.2)

Adding equations (9.1) and (9.2) together then gives

2S = nφ(n)

and dividing by 2 gives the desired result.

9.2.10 Problem 10

Show that ∑
p≤x

σ(p)−
∑
p≤x

φ(p) =
∑
p≤x

d(p),

where each sum is over the primes less than or equal to x.
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Proof. Note that for any prime p, σ(p) = p+ 1, φ(p) = p− 1, and d(p) = 2. So
we have ∑

p≤x

σ(p)−
∑
p≤x

φ(p) =
∑
p≤x

(p+ 1)−
∑
p≤x

(p− 1)

=
∑
p≤x

2

=
∑
p≤x

d(p).

9.2.11 Problem 11

Prove Lemma 3 by starting with the fact that there are integers r and s such
that ar +ms = 1.

Proof. We want to show that if (a,m) = 1 and a ≡ b (mod m), then (b,m) = 1.
Since ar +ms = 1, we have

1 ≡ ar ≡ br (mod m),

which implies that br+ km = 1 for some integer k. This is enough to show that
(b,m) = 1.

9.2.12 Problem 12

If (a,m) = 1, show that any x such that

x ≡ caφ(m)−1 (mod m) (9.3)

satisfies ax ≡ c (mod m).

Proof. Let x satisfy (9.3). Multiplying both sides of this congruence by a gives

ax ≡ caφ(m) (mod m),

and since (a,m) = 1, we have caφ(m) ≡ c (mod m) by Euler’s Theorem.

9.2.13 Problem 13

Let f(n) = (n+ φ(n))/2. Show that f(f(n)) = φ(n) if n = 2k, k = 3, 4, 5, . . . .

Proof. We compute

f(2k) =
2k + φ(2k)

2

=
2k + 2k−1

2

= 2k−1 + 2k−2

= 2k−2(2 + 1)

= 2k−2 · 3.
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So,

f(f(2k)) = f(2k−2 · 3)

=
2k−2 · 3 + φ(2k−2)φ(3)

2

=
2k−2 · 3 + 2k−3 · 2

2

= 2k−3 · 3 + 2k−3

= 2k−3(3 + 1)

= 2k−1

= φ(2k).

We see that f(f(2k)) = φ(2k) for all k ≥ 3.

9.2.14 Problem 14

Find four solutions of φ(n) = 16.

Solution. Since 3− 1 = 2, 5− 1 = 4, and 17− 1 = 16, solutions should have the
form 2a3b5c17d for some nonnegative integers a, b, c, d. By inspection, we find

φ(17) = 16,

φ(32) = φ(25) = 16,

φ(34) = φ(2)φ(17) = 1 · 16 = 16,

φ(40) = φ(23)φ(5) = 4 · 4 = 16,

φ(48) = φ(24)φ(3) = 8 · 2 = 16,

and

φ(60) = φ(22)φ(3)φ(5) = 2 · 2 · 4 = 16.

9.2.15 Problem 15

Find all solutions of φ(n) = 4 and prove that there are no more.

Solution. Let n be a solution, and let n = pe11 p
e2
2 · · · p

ek
k be the prime-power

decomposition of n. Then

φ(n) = pe1−11 (p1 − 1)pe2−12 (p2 − 1) · · · pek−1k (pk − 1) = 4.

Each factor in this expression must be either 1, 2, or 4. If

pei−1i (pi − 1) = 1,

then pi = 2 and ei = 1. If
pei−1i (pi − 1) = 2,

then either pi = 2 and ei = 2 or pi = 3 and ei = 1. And if

pei−1i (pi − 1) = 4,
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then either pi = 2 and ei = 3 or pi = 5 and ei = 1. We can see that these are
the only possibilities. Thus we have the following solutions.

φ(5) = 4,

φ(8) = φ(23) = 22 = 4,

φ(10) = φ(2)φ(5) = 1 · 4 = 4,

and

φ(12) = φ(22)φ(3) = 2 · 2 = 4.

As we have ruled out all other possibilities, these are the only solutions.

9.2.16 Problem 16

Show that φ(mn) > φ(m)φ(n) if m and n have a common factor greater than
1.

Proof. Let p be a prime. Then for all positive integers e and f ,

pe+f−1(p− 1) = pe+f−2p(p− 1) > pe+f−2(p− 1)2. (9.4)

Now suppose (m,n) = d > 1 and let k be the number of distinct prime
factors of d. We will use induction on k to show that φ(mn) > φ(m)φ(n).

First, if k = 1, then we can write m = ape and n = bpf for some positive
integers e and f , with (a, b) = (a, p) = (b, p) = 1. Then (9.4) implies

φ(mn) = φ(a)φ(b)φ(pe+f )

= φ(a)φ(b)pe+f−1(p− 1)

> φ(a)φ(b)pe+f−2(p− 1)2

=
(
φ(a)pe−1(p− 1)

) (
φ(b)pf−1(p− 1)

)
= φ(a)φ(pe)φ(b)φ(pf )

= φ(m)φ(n),

so φ(mn) > φ(m)φ(n) in the case where k = 1.
Now suppose φ(mn) > φ(m)φ(n) whenever the common factor d has k

distinct prime factors for some particular k ≥ 1. Then suppose d has k + 1
distinct prime factors, and let one of the factors be p. Then we can write

m = ape and n = bpf

for some positive integers e and f with (a, p) = (b, p) = 1. If (a, b) = c, then we
know that c has at most k distinct prime factors, so the induction hypothesis
tells us that φ(ab) ≥ φ(a)φ(b) (with equality in the case where c = 1). Then,
again making use of (9.4), we have

φ(mn) = φ(ab)φ(pe+f )

= φ(ab)pe+f−1(p− 1)

> φ(ab)pe+f−2(p− 1)2

≥ φ(a)pe−1(p− 1)φ(b)pf−1(p− 1)

= φ(m)φ(n).

By induction, the result holds for all positive integers k.
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9.2.17 Problem 17

Show that (m,n) = 2 implies φ(mn) = 2φ(m)φ(n).

Proof. Suppose (m,n) = 2. Then both m and n are even, but one of m or n
contains only one factor of 2. Without loss of generality, let it be m, so that
m = 2k where k is odd. Then n = 2e` for some positive integer e and odd
integer `, where (k, `) = 1. Note that φ(m) = φ(2)φ(k) = φ(k). So we get

φ(mn) = φ(2e+1k`)

= φ(2e+1)φ(k)φ(`)

= 2eφ(m)φ(`)

= 2 · 2e−1φ(m)φ(`)

= 2φ(2e)φ(m)φ(`)

= 2φ(m)φ(n).

9.2.18 Problem 18

Show that φ(n) = n/2 if and only if n = 2k for some positive integer k.

Proof. Suppose 2φ(n) = n. Write n = 2km, where m is odd. Then

2km = 2φ(2km) = 2φ(2k)φ(m) = 2kφ(m).

But this can be true if and only if m = φ(m), which can only be the case when
m = 1.

9.2.19 Problem 19

Show that if n− 1 and n+ 1 are both primes and n > 4, then φ(n) ≤ n/3.

Proof. Since n−1 and n+1 are prime with n > 4, we know that 6 | n. Therefore
n has the form n = 2a3bk for some positive integers a, b, and k with (k, 6) = 1.
Then

3φ(n) = 3φ(2a)φ(3b)φ(k)

= 2a−13b(3− 1)φ(k)

= 2a3bφ(k)

≤ 2a3bk = n.

So φ(n) ≤ n/3.

9.2.20 Problem 20

Show that φ(n) = 14 is impossible.

Proof. Suppose φ(n) = 14 for some n. Then

φ(n) = pe1−11 (p1 − 1) · · · pek−1k (pk − 1),

where n = pe11 · · · p
ek
k is the prime-power decomposition of n.
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We know that 7 | φ(n), so one of the factors pei−1i or (pi − 1) must be 7.
Since 8 is not a prime, we cannot have pi − 1 = 7, so pei−1i = 7 for some i. But
then pi − 1 = 6 so that 3 divides φ(n), which is clearly impossible. Therefore
there is no n with φ(n) = 14.



Chapter 10

Primitive Roots

10.1 Exercises

10.1.1 Exercise 1

What are the orders of 3, 5, and 7, modulo 8?

Solution. Since 32 ≡ 1 (mod 8), 52 ≡ 1 (mod 8), and 72 ≡ 1 (mod 8), we see
that each of these residues has order 2.

10.1.2 Exercise 2

What order can an integer have (mod 9)? Find an example of each.

Solution. Since φ(9) = 3 · 2 = 6, the possible orders are 1, 2, 3, and 6. 1 is the
only integer with order 1. 8 has order 2 since 82 ≡ 1 (mod 9). 4 has order 3
since 42 ≡ 7 (mod 9) and 43 ≡ 1 (mod 9). And 2 has order 6, since 22 ≡ 4
(mod 9) and 23 ≡ 8 (mod 9).

10.1.3 Exercise 3

Using the corollary to Theorem 3, what is the smallest possible prime divisor
of 219 − 1?

Solution. By the corollary, any divisor can be written 2 ·19k+1 = 38k+1. The
smallest numbers of this form are 1, 39, 77, 115, 153, and 191. The smallest
possible prime divisor is therefore 191. (191 is not a divisor, however, as 219− 1
happens to be prime).

10.1.4 Exercise 4

Show that 3 is a primitive root of 7.
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Solution. We get

31 ≡ 3 (mod 7),

32 ≡ 2 (mod 7),

33 ≡ 6 (mod 7),

34 ≡ 4 (mod 7),

35 ≡ 5 (mod 7),

36 ≡ 1 (mod 7).

Since φ(7) = 6, 3 is a primitive root of 7.

10.1.5 Exercise 5

Find, by trial, a primitive root of 10.

Solution. φ(10) = 4. The powers of 3 (mod 10) are, respectively, 3, 9, 7, and 1,
so 3 is a primitive root of 10. 7 is also a primitive root.

10.1.6 Exercise 6

Use the table of powers (mod 11) at the beginning of this section to verify that
the corollary is true for p = 11.

Solution. There is only one least residue with order 2 (namely 10), and φ(2) = 1.
There are 4 residues with order 5 (3, 4, 5, and 9), and φ(5) = 4. And there
are 4 residues with order 10 (2, 6, 7, and 8), and φ(10) = 4. In each case the
corollary holds.

10.1.7 Exercise 7

Which of the integers 2, 3, . . . , 25 do not have primitive roots?

Solution. The only integers with primitive roots are 1, 2, 4, pe, and 2pe where p
is an odd prime. So 8, 12, 15, 16, 20, 21, and 24 do not have primitive roots.

10.2 Problems

10.2.1 Problem 1

Find the orders of 1, 2, . . . , 12 (mod 13).

Solution. 1 has order 1. 12 has order 2. 3 and 9 have order 3. 5 and 8 have
order 4. 4 and 10 have order 6. 2, 6, 7, and 11 have order 12.

10.2.2 Problem 2

Find the orders of 1, 2, . . . , 16 (mod 17).

Solution. 1 has order 1. 16 has order 2. 4 and 13 have order 4. 2, 8, 9, and 15
have order 8. 3, 5, 6, 7, 10, 11, 12, and 14 have order 16.
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10.2.3 Problem 3

One of the primitive roots of 19 is 2. Find all of the others.

Solution. According to the corollary to Lemma 1, 2k will be a primitive root of
19 when (k, 18) = 1. So the primitive roots are 2, 25 ≡ 13, 27 ≡ 14, 211 ≡ 15,
213 ≡ 3, and 217 ≡ 10 (mod 19).

10.2.4 Problem 4

One of the primitive roots of 23 is 5. Find all of the others.

Solution. 5k should be a primitive root when (k, 22) = 1. So the primitive roots
are 5, 53, 55, 57, 59, 513, 515, 517, 519, and 521. Computing these powers, we
find that the primitive roots are 7, 10, 11, 14, 15, 17, 19, 20, and 21.

10.2.5 Problem 5

What are the orders of 2, 4, 7, 8, 11, 13, and 14 (mod 15)? Does 15 have
primitive roots?

Solution. 4, 11, and 14 have order 2. 2, 7, 8, and 13 have order 4. No integer
has an order of φ(15) = 8, so 15 does not have primitive roots.

10.2.6 Problem 6

What are the orders of 3, 7, 9, 11, 13, 17, and 19 (mod 20)? Does 20 have
primitive roots?

Solution. 9, 11, and 19 have order 2. 3, 7, 13, and 17 have order 4. No integer
has an order of φ(20) = 8, so 20 does not have primitive roots.

10.2.7 Problem 7

Which integers have order 6 (mod 31)?

Solution. By inspection, 6 has order 6 (mod 31). As in the proof of Theorem 6,
we can find the other integers with order 6 by taking 6k for k such that (k, 6) = 1.
So the least residues having order 6 are 6 and 65 ≡ 26 (mod 31).

10.2.8 Problem 8

Which integers have order 6 (mod 37)?

Solution. 11 has order 6, so 115 ≡ 27 (mod 37) also has order 6.
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10.2.9 Problem 9

If a, a 6= 1, has order t (mod p), show that

at−1 + at−2 + · · ·+ 1 ≡ 0 (mod p).

Proof. Since a has order t, at − 1 ≡ 0 (mod p). Then

0 ≡ at − 1 ≡ (a− 1)(at−1 + at−2 + · · ·+ 1) (mod p).

Since p is prime and a− 1 6≡ 0 (mod p), we have

at−1 + at−2 + · · ·+ 1 ≡ 0 (mod p).

10.2.10 Problem 10

If g and h are primitive roots of an odd prime p, then g ≡ hk (mod p) for some
integer k. Show that k is odd.

Proof. This follows from Lemma 1. h has order p − 1, so hk has the same
order if and only if (k, p − 1) = 1. But since p is an odd prime, if k is even
then (k, p − 1) ≥ 2 and g would not be a primitive root. Therefore k must be
odd.

10.2.11 Problem 11

Show that if g and h are primitive roots of an odd prime p, then the least residue
of gh is not a primitive root of p.

Proof. Since g and h are both primitive roots, h = gk for some integer k. By
the previous problem we know that k must be odd. Then gh = gk+1 cannot be
a primitive root, because k + 1 is even.

10.2.12 Problem 12

If g, h, and k are primitive roots of p, is the least residue of ghk always a
primitive root of p?

Solution. This is not true in general. For example, for p = 23, one can verify
that 5, 10, and 17 are primitive roots, but 5 · 10 · 17 ≡ 22 (mod 23) and 22 is
not a primitive root of 23.

10.2.13 Problem 13

Show that if a has order 3 (mod p), then a+ 1 has order 6 (mod p).

Proof. Rewriting a3 − 1 ≡ 0 (mod p), we get (a− 1)(a2 + a+ 1) ≡ 0 (mod p),
and since a 6≡ 1 (mod p), we get a2 + a+ 1 ≡ 0 (mod p). Then

(a+ 1)3 = a3 + 3a2 + 3a+ 1

≡ 1 + 3a2 + 3a+ 1 (mod p)

≡ 3(a2 + a+ 1)− 1 (mod p)

≡ −1 (mod p).
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Since p > 2 (because a has order greater than 2), 1 6≡ −1 (mod p) and we see
that the order of a + 1 is not 3. But (a + 1)6 ≡ 1 (mod p) so the order of a
must divide 6.

The proof will be complete if we can show that a+ 1 does not have order 2.
Since

(a+ 1)2 = a2 + 2a+ 1

= (a2 + a+ 1) + a

≡ a (mod p),

we see that a+ 1 does not have order 2. Therefore a+ 1 has order 6.

10.2.14 Problem 14

If p and q are odd primes and q | ap+1, show that either q | a+1 or q = 2kp+1
for some integer k.

Proof. We know that ap ≡ −1 (mod q), so the order of a (mod q) cannot be 1
or p. And since a2p ≡ 1 (mod q), the order of a (mod q) is either 2 or 2p.

If the order of a is 2, then a ≡ −1 (mod q) so q | a+ 1.

On the other hand, if the order of a is 2p, then 2p | φ(q) = q − 1 so that
q = 2kp+ 1.

10.2.15 Problem 15

Suppose that a has order 4 (mod p). What is the least residue of (a + 1)4

(mod p)?

Solution. Since a has order 4, we know that a2 ≡ −1 (mod p), and a3 ≡ −a
(mod p). So

(a+ 1)4 = a4 + 4a3 + 6a2 + 4a+ 1

≡ 1− 4a− 6 + 4a+ 1 (mod p)

≡ −4 (mod p).

Therefore the least residue of (a+ 1)4 is p− 4.

10.2.16 Problem 16

Show that 131071 = 217 − 1 is prime.

Solution. Suppose 217− 1 is not prime, and let q be the smallest positive prime
divisor. From Theorem 3, we must have q = 34k + 1 for some integer k. The
only possibilities are q = 103, 137, 239, and 307 (since

√
131071 < 363). One

can easily check that none of these divide 131071. Therefore it is prime.
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10.2.17 Problem 17

Show that (219 + 1)/3 is prime.

Solution. Let p = (219 + 1)/3 = 174763. By Problem 10.2.14 we know that any
positive prime divisor of p other than 3 must have the form q = 38k + 1 for
some integer k. So the only prime divisors we need to check are 3, 191, and 229.
All other possibilities are bigger than

√
p. Since none of these three integers are

divisors, p must be prime.

10.2.18 Problem 18

If g is a primitive root of p, show that two consecutive powers of g have consec-
utive least residues. That is, show that there exists k such that gk+1 ≡ gk + 1
(mod p).

Proof. We want to show that gk(g − 1) ≡ 1 (mod p) for some integer k. The
linear congruence x(g − 1) ≡ 1 (mod p) has a solution in x since (g − 1, p) = 1.
But every least residue (mod p) can be written in the form gk for some k by
Theorem 5. Thus a solution exists (and is, in fact, unique modulo p).

10.2.19 Problem 19

If g is a primitive root of p, show that no three consecutive powers of g have
consecutive least residues. That is, show that gk+2 ≡ gk+1+1 ≡ gk+2 (mod p)
is impossible for any k.

Proof. In order for this to be true, we would need

gk(g − 1) ≡ 1 (mod p) and gk+1(g − 1) ≡ 1 (mod p).

But, as mentioned in the previous problem, x(g − 1) ≡ 1 (mod p) has exactly
one solution since (g − 1, p) = 1. So we must have gk ≡ gk+1 (mod p). But
then gk(g − 1) ≡ 0 (mod p), which is a contradiction.

10.2.20 Problem 20

(a) Show that if m is a number having primitive roots, then the product of
the positive integers less than or equal to m and relatively prime to it is
congruent to −1 (mod m).

Proof. The case for m = 2 is easy to check, so we will assume that m > 2.
Let g be a primitive root of m. By Theorem 5, the positive integers less
than or equal to m and relatively prime to it are given by the powers of
g. That is,

g, g2, g3, . . . , gφ(m)
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is a permutation of these relatively prime integers. Therefore∏
1≤i≤m
(i,m)=1

i =
∏

1≤j≤φ(m)

gj

= g · g2 · g3 · · · gφ(m)

= g1+2+···+φ(m)

= gφ(m)(φ(m)+1)/2.

Since φ(m) is even (m > 2), we can write

gφ(m)(φ(m)+1)/2 = (gφ(m)+1)φ(m)/2

≡ gφ(m)/2 (mod m)

≡ −1 (mod m).

Therefore the product of the positive integers less than or equal to m and
relatively prime to it is congruent to −1 (mod m).

(b) Show that the result in (a) is not always true if m does not have primitive
roots.

Solution. For example, 8 does not have primitive roots, and

1 · 3 · 5 · 7 ≡ 1 6≡ −1 (mod 8).
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Chapter 11

Quadratic Congruences

11.1 Exercises

11.1.1 Exercise 1

Convert 2x2 + 3x+ 1 ≡ 0 (mod 5) to a quadratic congruence whose first coeffi-
cient is 1.

Solution. Since 3 · 2 = 6 ≡ 1 (mod 5), we may multiply the above congruence
by 3 to get

x2 + 4x+ 3 ≡ 0 (mod 5).

11.1.2 Exercise 2

Change the quadratic in Exercise 11.1.1 to the form y2 ≡ a (mod p).

Solution. Completing the square gives

x2 + 4x+ 4 ≡ 1 (mod 5),

or
(x+ 2)2 ≡ 1 (mod 5).

11.1.3 Exercise 3

By inspection, find all the solutions of the congruence in Exercise 11.1.2.

Solution. The congruence x2 ≡ 1 (mod 5) has solutions x ≡ 1 and x ≡ 4 (mod
5), so

(x+ 2)2 ≡ 1 (mod 5)

has solutions x ≡ 2 and x ≡ 4 (mod 5).

11.1.4 Exercise 4

If p > 3, what are the two solutions of x2 ≡ 4 (mod p)?

Solution. We have p | (x− 2)(x+ 2) so p | (x− 2) or p | (x+ 2). Then x ≡ 2 or
x ≡ p− 2 (mod p). By Theorem 1, these are the only solutions.
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11.1.5 Exercise 5

For what values of a does x2 ≡ a (mod 7) have two solutions?

Solution. We find the values of x2, reduced modulo 7:

x 1 2 3 4 5 6
x2 (mod 7) 1 4 2 2 4 1

From these values, we see that x2 ≡ a (mod 7) has two solutions when (and
only when) a ≡ 1, 2, or 4 (mod 7).

11.1.6 Exercise 6

Find the solutions of x2 ≡ 8 (mod 31).

Solution. One may check that this congruence satisfies Euler’s Criterion. We
have

8 ≡ 39 ≡ 70 ≡ 101 ≡ 132 ≡ 22 · 33 (mod 31),

and

33 ≡ 64 ≡ 82 (mod 31).

Therefore 8 ≡ 162 (mod 31) and we see that the quadratic congruence x2 ≡ 8
(mod 31) has the two solutions

x ≡ −16 ≡ 15 (mod 31) and x ≡ 16 (mod 31).

11.1.7 Exercise 7

What is (1/3)? (1/7)? (1/11)? In general, what is (1/p)?

Solution. Since 1 is a quadratic residue mod 3, the Legendre symbol (1/3) = 1.
Similarly, (1/7) = (1/11) = 1. In general, for any odd prime p, 1 satisfies Euler’s
Criterion so we have (1/p) = 1.

11.1.8 Exercise 8

What is (4/5)? (4/7)? (4/p) for any odd prime p?

Solution. It is easy to see by Euler’s Criterion that (4/5) = (4/7) = 1. And
in fact, 2 and p − 2 are always solutions to the quadratic congruence x2 ≡ 4
(mod p) for any odd prime p. Hence (4/p) = 1.

11.1.9 Exercise 9

Induce a theorem from the two preceding exercises.

Solution. It seems that (a2/p) = 1 for any a, provided p - a. Indeed, this is
easily seen to be true since a itself is a solution to the congruence x2 ≡ a2

(mod p).
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11.1.10 Exercise 10

Verify that

if (a/p) = −1 and a ≡ b (mod p), then (b/p) = −1.

Proof. Suppose (a/p) = −1 and a ≡ b (mod p), but that (b/p) = 1. Then
x2 ≡ b (mod p) has a solution. But now x2 ≡ a (mod p) must have the same
solution, which gives a contradiction. Therefore (b/p) = −1.

11.1.11 Exercise 11

Prove that if p - a, then (a2/p) = 1, using the fact that (a/p) ≡ a(p−1)/2

(mod p).

Proof. From the above, and by Fermat’s Theorem, we have that

(a2/p) ≡ (a2)(p−1)/2 ≡ ap−1 ≡ 1 (mod p).

Since the Legendre symbol on the left is either 1 or −1, the congruence implies
equality.

11.1.12 Exercise 12

Prove that (4a/p) = (a/p).

Proof. In Exercise 11.1.8 we saw that (4/p) = 1. So, by Theorem 3 (C), we
have

(4a/p) = (4/p)(a/p) = (a/p).

11.1.13 Exercise 13

Evaluate (19/5) and (−9/13) by using (A) and (B) of Theorem 3.

Solution. We have

(19/5) = (4/5) = (22/5) = 1

and

(−9/13) = (4/13) = (22/13) = 1.

11.1.14 Exercise 14

For which of the primes 3, 5, 7, 11, 13, 17, 19, and 23 is −1 a quadratic residue?

Solution. We can apply Theorem 5. Since 5 ≡ 13 ≡ 17 ≡ 1 (mod 4), we see
that −1 is a quadratic residue (mod p) for p = 5, 13, and 17. It is not a quadratic
residue for the remaining primes.
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11.1.15 Exercise 15

Evaluate (6/7) and (2/23)(11/23).

Solution. Note that 7 ≡ 3 (mod 4) and 23 ≡ 3 (mod 4). Therefore

(6/7) = (−1/7) = −1

and
(2/23)(11/23) = (22/23) = (−1/23) = −1.

11.2 Problems

11.2.1 Problem 1

Which of the following congruences have solutions?

x2 ≡ 7 (mod 53) x2 ≡ 14 (mod 31)

x2 ≡ 53 (mod 7) x2 ≡ 25 (mod 997)

Solution. By the Quadratic Reciprocity Theorem, we have

(7/53) = (53/7) = (4/7) = 1.

Therefore x2 ≡ 7 (mod 53) and x2 ≡ 53 (mod 7) both have solutions.
Next,

(14/31) = (2/31)(7/31).

Since 31 ≡ 7 (mod 8), we have by Theorem 6 that (2/31) = 1. For (7/31) we
get, by Quadratic Reciprocity,

(7/31) = −(31/7) = −(3/7) = (7/3) = (1/3) = 1.

Therefore (14/31) = 1 · 1 = 1 and x2 ≡ 14 (mod 31) has a solution.
Lastly, (25/997) = (52/997) = 1, so x2 ≡ 25 (mod 997) also has a solution.

11.2.2 Problem 2

Which of the following congruences have solutions?

x2 ≡ 8 (mod 53) x2 ≡ 15 (mod 31)

x2 ≡ 54 (mod 7) x2 ≡ 625 (mod 9973)

Solution. 53 ≡ 5 (mod 8), so

(8/53) = (2/53)(4/53) = (2/53) = −1,

and therefore the congruence x2 ≡ 8 (mod 53) has no solutions.
Next,

(15/31) = (3/31)(5/31) = −(31/3)(31/5) = −(1/3)(1/5) = −1,
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so the congruence x2 ≡ 15 (mod 31) has no solutions.

(54/7) = (5/7) = (7/5) = (2/5) = −1,

so x2 ≡ 54 (mod 7) has no solutions.
Lastly,

(625/9973) = (252/9973) = 1,

so x2 ≡ 625 (mod 9973) does have a solution.

11.2.3 Problem 3

Find solutions for the congruences in Problem 11.2.1 that have them.

Solution. For x2 ≡ 7 (mod 53), we have

7 ≡ 60 ≡ 22 · 15 (mod 53),

15 ≡ 68 ≡ 22 · 17 (mod 53),

17 ≡ 70 ≡ 123 ≡ 176 ≡ 42 · 11 (mod 53),

and

11 ≡ 64 ≡ 82 (mod 53).

Since 2 · 2 · 4 · 8 = 128 ≡ 22 (mod 53), the congruence x2 ≡ 7 (mod 53) has the
two solutions

x ≡ 22 (mod 53) and x ≡ 31 (mod 53).

Next, 53 ≡ 4 ≡ 22 (mod 7), so the congruence x2 ≡ 53 (mod 7) has the two
solutions

x ≡ 2 (mod 7) and x ≡ 5 (mod 7).

Modulo 31, we have

14 ≡ 45 ≡ 32 · 5 (mod 31)

and
5 ≡ 36 ≡ 62 (mod 31).

Since 3 · 6 = 18, the congruence x2 ≡ 14 (mod 31) has the two solutions

x ≡ 13 (mod 31) and x ≡ 18 (mod 31).

Finally, the congruence x2 ≡ 25 (mod 997) is easily seen to have solutions

x ≡ 5 (mod 997) and x ≡ 992 (mod 997).

11.2.4 Problem 4

Find solutions for the congruences in Problem 11.2.2 that have them.

Solution. Only x2 ≡ 625 (mod 9973) has a solution. Since 625 = 252, we see
that the two solutions to the congruence are

x ≡ 25 (mod 9973) and x ≡ 9948 (mod 9973).
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11.2.5 Problem 5

Calculate (33/71), (34/71), (35/71), and (36/71).

Solution. Note that 71 ≡ 3 (mod 4) and 71 ≡ 7 (mod 8). Therefore

(33/71) = (3/71)(11/71) = (71/3)(71/11)

= (2/3)(5/11) = (2/3)(11/5)

= (2/3)(1/5) = −1 · 1 = −1,

(34/71) = (2/71)(17/71) = (71/17)

= (3/17) = (17/3)

= (2/3) = −1,

(35/71) = (5/71)(7/71) = −(71/5)(71/7)

= −(1/5)(1/7) = −1,

and

(36/71) = 1.

11.2.6 Problem 6

Calculate (33/73), (34/73), (35/73), and (36/73).

Solution. Note that 73 ≡ 1 (mod 4) and 73 ≡ 1 (mod 8). So

(33/73) = (3/73)(11/73)

= (73/3)(73/11)

= (1/3)(7/11)

= −(11/7) = −(4/7)

= −1,

(34/73) = (2/73)(17/73)

= (73/17) = (5/17)

= (17/5) = (2/5)

= −1,

(35/73) = (5/73)(7/73)

= (73/5)(73/7)

= (3/5)(3/7)

= −(5/3)(7/3)

= −(2/3)(1/3) = 1,

(36/73) = 1.

11.2.7 Problem 7

Solve 2x2 + 3x+ 1 ≡ 0 (mod 7) and 2x2 + 3x+ 1 ≡ 0 (mod 101).
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Solution. Since 2 · 4 ≡ 1 (mod 7) we may multiply the first congruence by 4 to
get

x2 + 5x+ 4 ≡ 0 (mod 7).

Note that 5 ≡ −2 (mod 7), so

x2 − 2x+ 4 ≡ 0 (mod 7).

Completing the square now gives

(x− 1)2 ≡ −3 (mod 7).

So (x− 1)2 ≡ 4 (mod 7) and we get x ≡ 3 (mod 7) or x ≡ 6 (mod 7).

For the second congruence, we have 2 · 51 ≡ 1 (mod 101), so multiplying by
51 gives

x2 + 52x+ 51 ≡ 0 (mod 101).

Note that 262 = 676 ≡ 70 (mod 101), so we can rearrange to get

x2 + 52x+ 70 ≡ 19 (mod 101)

or

(x+ 26)2 ≡ 19 (mod 101).

Note that 19 ≡ 625 (mod 101), so x+ 26 ≡ ±25 (mod 101). The two solutions
of the second congruence are therefore

x ≡ 50 (mod 101) and x ≡ 100 (mod 101).

11.2.8 Problem 8

Solve 3x2 + x+ 8 ≡ 0 (mod 11) and 3x2 + x+ 52 ≡ 0 (mod 11).

Solution. Note that both congruences are the same, since 52 ≡ 8 (mod 11).
Now, because 4 is the multiplicative inverse of 3 (mod 11), we have

x2 + 4x+ 10 ≡ 0 (mod 11).

Rearranging, we get

x2 + 4x+ 4 ≡ 5 (mod 11)

or

(x+ 2)2 ≡ 5 (mod 11).

Since 5 ≡ 16 (mod 11), we get

x+ 2 ≡ ±4 (mod 11)

so that x ≡ 2 or x ≡ 5 (mod 11).
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11.2.9 Problem 9

Calculate (1234/4567) and (4321/4567).

Solution. We have

(1234/4567) = (2/4567)(617/4567).

Since 4567 ≡ 7 (mod 8), we know (2/4567) = 1 by Theorem 6. And since
617 ≡ 1 (mod 4), we may apply Quadratic Reciprocity to get

(617/4567) = (4567/617) = (248/617) = (8/617)(31/617).

Now 617 ≡ 1 (mod 8), so (8/617) = (2/617) = 1. Again, using Quadratic
Reciprocity, we get

(31/617) = (617/31) = (28/31) = (4/31)(7/31)

= −(31/7) = −(3/7) = (7/3) = (1/3) = 1.

Therefore
(1234/4567) = 1.

Next,

(4321/4567) = (29/4567)(149/4567)

= (4567/29)(4567/149)

= (14/29)(97/149)

= (2/29)(7/29)(97/149).

Now (2/29) = −1 by Theorem 6. For (7/29), we get

(7/29) = (29/7) = (1/7) = 1.

For (97/149), we get

(97/149) = (149/97) = (52/97)

= (4/97)(13/97)

= (97/13) = (6/13)

= (2/13)(3/13).

(2/13) = −1 by Theorem 6 and (3/13) = (13/3) = (1/3) = 1. Putting every-
thing together, we get

(4321/4567) = −1 · 1 · −1 · 1 = 1.

11.2.10 Problem 10

Calculate (1356/2467) and (6531/2467).

Solution. In the same fashion as the previous exercise, we may determine that

(1356/2467) = 1 and (6531/2467) = −1.
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11.2.11 Problem 11

Show that if p = q + 4a (p and q are odd primes), then (p/q) = (a/q).

Proof. Since p ≡ 4a (mod q), we have

(p/q) = (4a/q) = (4/q)(a/q) = (a/q).

11.2.12 Problem 12

Show that if p = 12k + 1 for some k, then (3/p) = 1.

Proof. p ≡ 1 (mod 4), so we may apply Quadratic Reciprocity to get

(3/p) = (p/3) = ((12k + 1)/3) = (1/3) = 1.

11.2.13 Problem 13

Show that Theorem 6 could also be written (2/p) = (−1)(p
2−1)/8 for odd primes

p.

Proof. If p ≡ 1 (mod 8) then p = 8k + 1 for some k and we get

p2 − 1

8
=

(8k + 1)2 − 1

8
=

64k2 + 16k

8
= 8k2 + 2k.

If instead p ≡ 7 (mod 8) then p = 8k + 7 for some k and

p2 − 1

8
=

64k2 + 112k + 48

8
= 8k2 + 14k + 6.

In either case, (p2 − 1)/8 is even, so (−1)(p
2−1)/8 = 1 = (2/p).

On the other hand, if p ≡ 3 (mod 8) then p = 8k + 3 and we have

p2 − 1

8
=

64k2 + 48k + 8

8
= 8k2 + 6k + 1,

and if p ≡ 5 (mod 8) then p = 8k + 5 and

p2 − 1

8
=

64k2 + 80k + 24

8
= 8k2 + 10k + 3.

In these latter two cases, (p2 − 1)/8 is odd and we get

(−1)(p
2−1)/8 = −1 = (2/p).

11.2.14 Problem 14

Show that the quadratic reciprocity theorem could also be written

(p/q)(q/p) = (−1)(p−1)(q−1)/4

for odd primes p and q.
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Proof. If p ≡ q ≡ 3 (mod 4), then (p/q)(q/p) = −1. In this case, p = 4m + 3
and q = 4n+ 3 for some m and n, and we get

(p− 1)(q − 1)

4
=

(4m+ 2)(4n+ 2)

4

=
16mn+ 8m+ 8n+ 4

4
= 4mn+ 2m+ 2n+ 1.

This number is odd, so

(−1)(p−1)(q−1)/4 = −1 = (p/q)(q/p).

Next, if p ≡ 1 (mod 4) then p = 4m+ 1 for some m and

(p− 1)(q − 1)

4
=

4m(q − 1)

4
= m(q − 1).

Now, since q is an odd prime, q − 1 is even. Therefore

(−1)(p−1)(q−1)/4 = 1 = (p/q)(q/p).

Arguing by symmetry, we see that this is also true when q ≡ 1 (mod 4).
In every case, (p/q)(q/p) = (−1)(p−1)(q−1)/4.

11.2.15 Problem 15

Student A says, “I’ve checked all the way up to 100 and I still haven’t found n
so that n2 +1 is divisible by 7. I’m tired now—I’ll find one tomorrow.” Student
B says, after a few seconds of reflection, “No you won’t.” How did B know so
quickly?

Solution. A is looking for n such that n2 ≡ −1 (mod 7). But we know from
Theorem 5 that (−1/7) = −1 (since 7 ≡ 3 (mod 4)). This shows that −1 is a
quadratic nonresidue (mod 7), so what A seeks is impossible to find.

11.2.16 Problem 16

Show that if a is a quadratic residue (mod p) and ab ≡ 1 (mod p) then b is a
quadratic residue (mod p).

Proof. Suppose (a/p) = 1 and ab ≡ 1 (mod p). Then

(b/p) = (a/p)(b/p) = (ab/p) = (1/p) = 1.

Therefore b is a quadratic residue (mod p).

11.2.17 Problem 17

Does x2 ≡ 211 (mod 159) have a solution? Note that 159 is not prime.

Solution. Since 211 ≡ 529 ≡ 232 (mod 159), we see that the congruence does
have solutions. In particular, x ≡ 23 and x ≡ 136 (mod 159) are solutions.

These are not the only solutions, however. We also have 211 ≡ 5776 ≡ 762

(mod 159), giving x ≡ 76 and x ≡ 83 (mod 159) as additional solutions.
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11.2.18 Problem 18

Prove that if p ≡ 3 (mod 8) and (p−1)/2 is prime, then (p−1)/2 is a quadratic
residue (mod p).

Proof. Let q = (p − 1)/2 be prime. Since p ≡ 3 (mod 8), we have p = 8k + 3
for some integer k. Then

q =
p− 1

2
=

8k + 2

2
= 4k + 1.

Hence q ≡ 1 (mod 4) and q is an odd prime. By Quadratic Reciprocity, we have
that (q/p) = (p/q).

Since p = 2q + 1, we have p ≡ 1 (mod q). Therefore (p/q) = (1/q) = 1. So,
by the result in the preceding paragraph, (q/p) = 1 and we see that q = (p−1)/2
is a quadratic residue (mod p).

11.2.19 Problem 19

Generalize Problem 11.2.16 by finding what condition on r will guarantee that
if a is a quadratic residue (mod p) and ab ≡ r (mod p), then b is a quadratic
residue (mod p).

Solution. Since (a/p) = 1, we get

1 = (b/p) = (a/p)(b/p) = (ab/p) = (r/p).

We see that the desired condition on r is that r is itself a quadratic residue
(mod p).

11.2.20 Problem 20

Suppose that p = q+4a, where p and q are odd primes. Show that (a/p) = (a/q).

Proof. Note that p ≡ q (mod 4), p ≡ 4a (mod q), and q ≡ −4a (mod p).
There are two cases. First, if p ≡ q ≡ 1 (mod 4), then

(a/p) = (−1/p)(4/p)(a/p) = (−4a/p) = (q/p)

and
(a/q) = (4/q)(a/q) = (4a/q) = (p/q).

The Quadratic Reciprocity Theorem then shows that (a/p) = (a/q).
On the other hand, if p ≡ q ≡ 3 (mod 4), then

(a/p) = −(−1/p)(4/p)(a/p) = −(−4a/p) = −(q/p)

and
(a/q) = (4a/q) = (p/q).

Again, Quadratic Reciprocity proves the result.
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